Anti-alignment driven dynamics in the excited states of molecules under
strong fields
- URL: http://arxiv.org/abs/2012.11316v1
- Date: Mon, 21 Dec 2020 13:29:31 GMT
- Title: Anti-alignment driven dynamics in the excited states of molecules under
strong fields
- Authors: Sebasti\'an Carrasco, Jos\'e Rogan, Juan Alejandro Valdivia, Ignacio
Sola
- Abstract summary: We develop two novel models of the H$+$ molecule and its isotopes.
We assess quantum-mechanically and semi-classically whether the molecule anti-aligns with the field in the first excited electronic state.
We conclude that the stabilization of these molecules in the excited state through bond-hardening under a strong field is highly unlikely.
- Score: 0.5849783371898033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop two novel models of the H$_2^+$ molecule and its isotopes from
which we assess quantum-mechanically and semi-classically whether the molecule
anti-aligns with the field in the first excited electronic state. The results
from both models allow us to predict anti-alignment dynamics even for the
HD$^+$ isotope, which possesses a permanent dipole moment. The molecule
dissociates at angles perpendicular to the field polarization in both the
excited and the ground electronic state, as the population is exchanged through
a conical intersection. The quantum mechanical dispersion of the initial state
is sufficient to cause full dissociation. We conclude that the stabilization of
these molecules in the excited state through bond-hardening under a strong
field is highly unlikely.
Related papers
- Rydberg molecules bound by strong light fields [0.0]
We show that Rydberg macrodimers, weakly bound pairs of Rydberg atoms, can form bound states with the continuum of free motional states.
This is enabled by the unique combination of extraordinarily slow vibrational motion in the molecular state and the optical coupling to a non-interacting continuum.
Our results present an intriguing mechanism to control decoherence and bind multiatomic molecules using strong light-matter interactions.
arXiv Detail & Related papers (2024-01-10T12:51:51Z) - Unraveling a cavity induced molecular polarization mechanism from collective vibrational strong coupling [0.0]
We show that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit.
Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure.
arXiv Detail & Related papers (2023-06-09T16:18:51Z) - Engineering long-range molecular potentials by external drive [0.0]
We report the engineering of molecular potentials at large interatomic distances.
The molecular states are generated by off-resonant optical coupling to a highly excited, long-range Rydberg molecular potential.
Our results open numerous possibilities to create long-range molecules between ultracold ground state atoms.
arXiv Detail & Related papers (2023-03-14T09:01:19Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Observation of trap-assisted formation of atom-ion bound states [0.0]
We report on observation of weakly bound molecular states formed between one ultracold $87$Rb atom and a single trapped $88$Sr$+$ ion.
We show that bound states can form efficiently in binary collisions, and enhance the rate of inelastic processes.
arXiv Detail & Related papers (2022-08-14T19:39:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Polarized Fock States for Polariton Photochemistry [0.0]
We use the polarized Fock states to describe the coupled molecule-cavity hybrid system in quantum electrodynamics.
The molecular permanent dipoles polarize the photon field by displacing its vector potential, leading to non-orthogonality between the Fock states of two different polarized photon fields.
arXiv Detail & Related papers (2020-05-01T03:51:19Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.