Analytic Model Reveals Local Molecular Polarizability Changes Induced by Collective Strong Coupling in Optical Cavities
- URL: http://arxiv.org/abs/2401.16374v2
- Date: Thu, 21 Nov 2024 12:52:46 GMT
- Title: Analytic Model Reveals Local Molecular Polarizability Changes Induced by Collective Strong Coupling in Optical Cavities
- Authors: Jacob Horak, Dominik Sidler, Thomas Schnappinger, Wei-Ming Huang, Michael Ruggenthaler, Angel Rubio,
- Abstract summary: We present non-perturbative analytic results for a model system consisting of an ensemble of $N$ harmonic molecules under vibrational strong coupling.
We discover that the electronic molecular polarizabilities are modified even in the case of vanishingly small single-molecule couplings.
- Score: 0.8642326601683299
- License:
- Abstract: Despite recent numerical evidence, one of the fundamental theoretical mysteries of polaritonic chemistry is how and if collective strong coupling can induce local changes of the electronic structure to modify chemical properties. Here we present non-perturbative analytic results for a model system consisting of an ensemble of $N$ harmonic molecules under vibrational strong coupling (VSC) that alters our present understanding of this fundamental question. By applying the cavity Born-Oppenheimer partitioning on the Pauli-Fierz Hamiltonian in dipole approximation, the dressed many-molecule problem can be solved self-consistently and analytically in the dilute limit. We discover that the electronic molecular polarizabilities are modified even in the case of vanishingly small single-molecule couplings. Consequently, this non-perturbative local polarization mechanism persists even in the large-$N$ limit. In contrast, a perturbative calculation of the polarizabilities leads to a qualitatively erroneous scaling behavior with vanishing effects in the large-$N$ limit. Nevertheless, the exact (self-consistent) polarizabilities can be determined from single-molecule strong coupling simulations instead. Our fundamental theoretical observations demonstrate that hitherto existing collective-scaling arguments are insufficient for polaritonic chemistry and they pave the way for refined single- (or few-) molecule strong-coupling ab-initio simulations of chemical systems under collective strong coupling.
Related papers
- Extending the Tavis-Cummings model for molecular ensembles -- Exploring the effects of dipole self energies and static dipole moments [0.0]
We extend the Tavis-Cummings model for molecular ensembles.
We simulate excited-state dynamics and spectroscopy of MgH$+$ molecules resonantly coupled to an optical cavity.
arXiv Detail & Related papers (2024-04-16T15:58:40Z) - Collective Polaritonic Effects on Chemical Dynamics Suppressed by Disorder [0.0]
We present a powerful formalism, disordered collective dynamics using truncated equations (d-CUT-E)
Using d-CUT-E we conclude that strong coupling, as evaluated from linear optical spectra, can be a poor proxy for polariton chemistry.
arXiv Detail & Related papers (2023-08-07T23:45:14Z) - Unraveling a cavity induced molecular polarization mechanism from collective vibrational strong coupling [0.0]
We show that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit.
Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure.
arXiv Detail & Related papers (2023-06-09T16:18:51Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Collective dynamics Using Truncated Equations (CUT-E): simulating the
collective strong coupling regime with few-molecule models [0.0]
We exploit permutational symmetries to drastically reduce the computational cost of textitab-initio quantum dynamics simulations for large $N$.
We show that addition of $k$ extra effective molecules is enough to account for phenomena whose rates scale as $mathcalO(N-k)$.
arXiv Detail & Related papers (2022-09-11T22:49:29Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local
Modification of Chemical Properties [0.0]
Polaritonic chemistry has become a rapidly developing field within the last few years.
Experiments suggest that chemical properties can be fundamentally altered and novel physical states appear when matter is strongly coupled to resonant cavity modes.
Up until now, theoretical approaches to explain and predict these observations were either limited to quantum optical models, suited to describe collective polaritonic effects, or ab initio approaches for small system sizes.
arXiv Detail & Related papers (2020-11-06T11:13:03Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.