論文の概要: Unsupervised Anomaly Detectors to Detect Intrusions in the Current
Threat Landscape
- arxiv url: http://arxiv.org/abs/2012.11354v1
- Date: Mon, 21 Dec 2020 14:06:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:17:48.993747
- Title: Unsupervised Anomaly Detectors to Detect Intrusions in the Current
Threat Landscape
- Title(参考訳): 現在の脅威景観における侵入検知のための教師なし異常検出装置
- Authors: Tommaso Zoppi, Andrea ceccarelli, Tommaso Capecchi, Andrea Bondavalli
- Abstract要約: 本研究では,Isolation Forests,One-Class Support Vector Machines,Self-Organizing Mapsが侵入検知用よりも有効であることを示した。
不安定、分散、あるいは非可逆的行動による攻撃を、ファジング、ワーム、ボットネットなどによって検出することがより困難である点を詳述する。
- 参考スコア(独自算出の注目度): 0.11470070927586014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection aims at identifying unexpected fluctuations in the expected
behavior of a given system. It is acknowledged as a reliable answer to the
identification of zero-day attacks to such extent, several ML algorithms that
suit for binary classification have been proposed throughout years. However,
the experimental comparison of a wide pool of unsupervised algorithms for
anomaly-based intrusion detection against a comprehensive set of attacks
datasets was not investigated yet. To fill such gap, we exercise seventeen
unsupervised anomaly detection algorithms on eleven attack datasets. Results
allow elaborating on a wide range of arguments, from the behavior of the
individual algorithm to the suitability of the datasets to anomaly detection.
We conclude that algorithms as Isolation Forests, One-Class Support Vector
Machines and Self-Organizing Maps are more effective than their counterparts
for intrusion detection, while clustering algorithms represent a good
alternative due to their low computational complexity. Further, we detail how
attacks with unstable, distributed or non-repeatable behavior as Fuzzing, Worms
and Botnets are more difficult to detect. Ultimately, we digress on
capabilities of algorithms in detecting anomalies generated by a wide pool of
unknown attacks, showing that achieved metric scores do not vary with respect
to identifying single attacks.
- Abstract(参考訳): 異常検出は、あるシステムの期待する振る舞いにおける予期せぬ変動を特定することを目的としている。
ゼロデイ攻撃の特定に対する信頼性の高い回答として認められており、長年にわたってバイナリ分類に適したMLアルゴリズムが提案されている。
しかし,攻撃データセットの包括的集合に対する異常ベース侵入検出のための広範囲な教師なしアルゴリズムの比較は,まだ検討されていない。
このようなギャップを埋めるために,11のアタックデータセットに対して17の教師なし異常検出アルゴリズムを実行した。
結果として、個々のアルゴリズムの振る舞いからデータセットの適合性、異常検出まで、幅広い議論を解明することができる。
隔離林, 一級支援ベクトルマシン, 自己組織化マップなどのアルゴリズムは侵入検出のアルゴリズムよりも有効であり, クラスタリングアルゴリズムは計算の複雑さが低いために優れた代替手段である。
さらに,不安定な,分散的,あるいは非可逆的な行動による攻撃を,ファズングやワーム,ボットネットなどの検出がより困難である点を詳述する。
最終的に、未知の攻撃の広いプールによって生成される異常を検知するアルゴリズムの能力を精査し、単一の攻撃を特定することで達成されたスコアが変化しないことを示した。
関連論文リスト
- Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
階層的フェデレートラーニング(HFL)は、車両ネットワークにおける敵または信頼できない車両の課題に直面している。
本研究では,動的車両選択とロバストな異常検出機構を統合した新しい枠組みを提案する。
提案アルゴリズムは,強烈な攻撃条件下においても顕著なレジリエンスを示す。
論文 参考訳(メタデータ) (2024-05-25T18:31:20Z) - Bagged Regularized $k$-Distances for Anomaly Detection [9.899763598214122]
BRDAD (Bagged regularized $k$-distances for Anomaly Detection) と呼ばれる距離に基づく新しいアルゴリズムを提案する。
我々のBRDADアルゴリズムは、重み付けされた密度推定のための$k$-distances(BWDDE)の実証的リスクの有限標本境界を最小化して重みを選択する。
理論的には,我々のアルゴリズムに対するAUCの高速収束率を確立し,バッグング手法が計算複雑性を著しく減少させることを示す。
論文 参考訳(メタデータ) (2023-12-02T07:00:46Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - TBDetector:Transformer-Based Detector for Advanced Persistent Threats
with Provenance Graph [17.518551273453888]
本稿では,ATT攻撃検出のための変圧器を用いた高度な脅威検出手法TBDetectorを提案する。
出現グラフは、豊富な歴史的情報を提供し、歴史的な相関能力に強力な攻撃を与える。
提案手法の有効性を評価するため,5つの公開データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-04-06T03:08:09Z) - A Revealing Large-Scale Evaluation of Unsupervised Anomaly Detection
Algorithms [0.0]
異常検出には、銀行詐欺検知やサイバー脅威検出から機器のメンテナンスや健康モニタリングまで、多くの応用がある。
我々は,最も普及している非教師付き異常検出方法の12点を概観した。
論文 参考訳(メタデータ) (2022-04-21T00:17:12Z) - Anomaly Rule Detection in Sequence Data [2.3757190901941736]
本稿では,一組のシーケンスからユーティリティを意識した外部規則の発見を可能にする,DUOSと呼ばれる新しい異常検出フレームワークを提案する。
本研究では,集団の異常性と実用性を両立させ,ユーティリティ・アウェア・アウトリー・ルール(UOSR)の概念を導入する。
論文 参考訳(メタデータ) (2021-11-29T23:52:31Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。