3D Object Detection with Pointformer
- URL: http://arxiv.org/abs/2012.11409v1
- Date: Mon, 21 Dec 2020 15:12:54 GMT
- Title: 3D Object Detection with Pointformer
- Authors: Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, Gao Huang
- Abstract summary: We propose Pointformer, a Transformer backbone designed for 3D point clouds to learn features effectively.
A Local Transformer module is employed to model interactions among points in a local region, which learns context-dependent region features at an object level.
A Global Transformer is designed to learn context-aware representations at the scene level.
- Score: 29.935891419574602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature learning for 3D object detection from point clouds is very
challenging due to the irregularity of 3D point cloud data. In this paper, we
propose Pointformer, a Transformer backbone designed for 3D point clouds to
learn features effectively. Specifically, a Local Transformer module is
employed to model interactions among points in a local region, which learns
context-dependent region features at an object level. A Global Transformer is
designed to learn context-aware representations at the scene level. To further
capture the dependencies among multi-scale representations, we propose
Local-Global Transformer to integrate local features with global features from
higher resolution. In addition, we introduce an efficient coordinate refinement
module to shift down-sampled points closer to object centroids, which improves
object proposal generation. We use Pointformer as the backbone for
state-of-the-art object detection models and demonstrate significant
improvements over original models on both indoor and outdoor datasets.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - TransPose: 6D Object Pose Estimation with Geometry-Aware Transformer [16.674933679692728]
TransPose is a novel 6D pose framework that exploits Transformer with geometry-aware module to develop better learning of point cloud feature representations.
TransPose achieves competitive results on three benchmark datasets.
arXiv Detail & Related papers (2023-10-25T01:24:12Z) - APPT : Asymmetric Parallel Point Transformer for 3D Point Cloud
Understanding [20.87092793669536]
Transformer-based networks have achieved impressive performance in 3D point cloud understanding.
To tackle these problems, we propose Asymmetric Parallel Point Transformer (APPT)
APPT is able to capture features globally throughout the entire network while focusing on local-detailed features.
arXiv Detail & Related papers (2023-03-31T06:11:02Z) - Hierarchical Point Attention for Indoor 3D Object Detection [111.04397308495618]
This work proposes two novel attention operations as generic hierarchical designs for point-based transformer detectors.
First, we propose Multi-Scale Attention (MS-A) that builds multi-scale tokens from a single-scale input feature to enable more fine-grained feature learning.
Second, we propose Size-Adaptive Local Attention (Local-A) with adaptive attention regions for localized feature aggregation within bounding box proposals.
arXiv Detail & Related papers (2023-01-06T18:52:12Z) - Learning Object-level Point Augmentor for Semi-supervised 3D Object
Detection [85.170578641966]
We propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection.
In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds.
Experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2022-12-19T06:56:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data.
CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers.
Our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-21T17:45:55Z) - LATFormer: Locality-Aware Point-View Fusion Transformer for 3D Shape
Recognition [38.540048855119004]
We propose a novel Locality-Aware Point-View Fusion Transformer (LATFormer) for 3D shape retrieval and classification.
The core component of LATFormer is a module named Locality-Aware Fusion (LAF) which integrates the local features of correlated regions across the two modalities.
In our LATFormer, we utilize the LAF module to fuse the multi-scale features of the two modalities both bidirectionally and hierarchically to obtain more informative features.
arXiv Detail & Related papers (2021-09-03T03:23:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.