Hierarchical Point Attention for Indoor 3D Object Detection
- URL: http://arxiv.org/abs/2301.02650v2
- Date: Wed, 8 May 2024 21:36:44 GMT
- Title: Hierarchical Point Attention for Indoor 3D Object Detection
- Authors: Manli Shu, Le Xue, Ning Yu, Roberto Martín-Martín, Caiming Xiong, Tom Goldstein, Juan Carlos Niebles, Ran Xu,
- Abstract summary: This work proposes two novel attention operations as generic hierarchical designs for point-based transformer detectors.
First, we propose Multi-Scale Attention (MS-A) that builds multi-scale tokens from a single-scale input feature to enable more fine-grained feature learning.
Second, we propose Size-Adaptive Local Attention (Local-A) with adaptive attention regions for localized feature aggregation within bounding box proposals.
- Score: 111.04397308495618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is an essential vision technique for various robotic systems, such as augmented reality and domestic robots. Transformers as versatile network architectures have recently seen great success in 3D point cloud object detection. However, the lack of hierarchy in a plain transformer restrains its ability to learn features at different scales. Such limitation makes transformer detectors perform worse on smaller objects and affects their reliability in indoor environments where small objects are the majority. This work proposes two novel attention operations as generic hierarchical designs for point-based transformer detectors. First, we propose Aggregated Multi-Scale Attention (MS-A) that builds multi-scale tokens from a single-scale input feature to enable more fine-grained feature learning. Second, we propose Size-Adaptive Local Attention (Local-A) with adaptive attention regions for localized feature aggregation within bounding box proposals. Both attention operations are model-agnostic network modules that can be plugged into existing point cloud transformers for end-to-end training. We evaluate our method on two widely used indoor detection benchmarks. By plugging our proposed modules into the state-of-the-art transformer-based 3D detectors, we improve the previous best results on both benchmarks, with more significant improvements on smaller objects.
Related papers
- SimPLR: A Simple and Plain Transformer for Scaling-Efficient Object Detection and Segmentation [49.65221743520028]
We show that a transformer-based detector with scale-aware attention enables the plain detector SimPLR' whose backbone and detection head are both non-hierarchical and operate on single-scale features.
Compared to the multi-scale and single-scale state-of-the-art, our model scales much better with bigger capacity (self-supervised) models and more pre-training data.
arXiv Detail & Related papers (2023-10-09T17:59:26Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection [21.96072831561483]
This paper proposes a novel Supervised Shape&Scale-perceptive Deformable Attention'' (S$3$-DA) module for monocular 3D object detection.
Benefiting from this, S$3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features.
Experiments on KITTI and Open datasets demonstrate that S$3$-DA significantly improves the detection accuracy.
arXiv Detail & Related papers (2023-09-02T12:36:38Z) - Feature Shrinkage Pyramid for Camouflaged Object Detection with
Transformers [34.42710399235461]
Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection.
They suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders.
We propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features.
arXiv Detail & Related papers (2023-03-26T20:50:58Z) - Towards Efficient Use of Multi-Scale Features in Transformer-Based
Object Detectors [49.83396285177385]
Multi-scale features have been proven highly effective for object detection but often come with huge and even prohibitive extra computation costs.
We propose Iterative Multi-scale Feature Aggregation (IMFA) -- a generic paradigm that enables efficient use of multi-scale features in Transformer-based object detectors.
arXiv Detail & Related papers (2022-08-24T08:09:25Z) - An Extendable, Efficient and Effective Transformer-based Object Detector [95.06044204961009]
We integrate Vision and Detection Transformers (ViDT) to construct an effective and efficient object detector.
ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector.
We extend it to ViDT+ to support joint-task learning for object detection and instance segmentation.
arXiv Detail & Related papers (2022-04-17T09:27:45Z) - ViDT: An Efficient and Effective Fully Transformer-based Object Detector [97.71746903042968]
Detection transformers are the first fully end-to-end learning systems for object detection.
vision transformers are the first fully transformer-based architecture for image classification.
In this paper, we integrate Vision and Detection Transformers (ViDT) to build an effective and efficient object detector.
arXiv Detail & Related papers (2021-10-08T06:32:05Z) - DA-DETR: Domain Adaptive Detection Transformer with Information Fusion [53.25930448542148]
DA-DETR is a domain adaptive object detection transformer that introduces information fusion for effective transfer from a labeled source domain to an unlabeled target domain.
We introduce a novel CNN-Transformer Blender (CTBlender) that fuses the CNN features and Transformer features ingeniously for effective feature alignment and knowledge transfer across domains.
CTBlender employs the Transformer features to modulate the CNN features across multiple scales where the high-level semantic information and the low-level spatial information are fused for accurate object identification and localization.
arXiv Detail & Related papers (2021-03-31T13:55:56Z) - 3D Object Detection with Pointformer [29.935891419574602]
We propose Pointformer, a Transformer backbone designed for 3D point clouds to learn features effectively.
A Local Transformer module is employed to model interactions among points in a local region, which learns context-dependent region features at an object level.
A Global Transformer is designed to learn context-aware representations at the scene level.
arXiv Detail & Related papers (2020-12-21T15:12:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.