Off-Policy Optimization of Portfolio Allocation Policies under
Constraints
- URL: http://arxiv.org/abs/2012.11715v1
- Date: Mon, 21 Dec 2020 22:22:04 GMT
- Title: Off-Policy Optimization of Portfolio Allocation Policies under
Constraints
- Authors: Nymisha Bandi and Theja Tulabandhula
- Abstract summary: Dynamic portfolio optimization problem in finance frequently requires learning policies that adhere to various constraints, driven by investor preferences and risk.
We motivate this problem of finding an allocation policy within a sequential decision making framework and study the effects of: (a) using data collected under previously employed policies, which may be sub-optimal and constraint-violating, and (b) imposing desired constraints while computing near-optimal policies with this data.
- Score: 0.8848340429852071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamic portfolio optimization problem in finance frequently requires
learning policies that adhere to various constraints, driven by investor
preferences and risk. We motivate this problem of finding an allocation policy
within a sequential decision making framework and study the effects of: (a)
using data collected under previously employed policies, which may be
sub-optimal and constraint-violating, and (b) imposing desired constraints
while computing near-optimal policies with this data. Our framework relies on
solving a minimax objective, where one player evaluates policies via off-policy
estimators, and the opponent uses an online learning strategy to control
constraint violations. We extensively investigate various choices for
off-policy estimation and their corresponding optimization sub-routines, and
quantify their impact on computing constraint-aware allocation policies. Our
study shows promising results for constructing such policies when back-tested
on historical equities data, under various regimes of operation, dimensionality
and constraints.
Related papers
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Optimizing Credit Limit Adjustments Under Adversarial Goals Using
Reinforcement Learning [42.303733194571905]
We seek to find and automatize an optimal credit card limit adjustment policy by employing reinforcement learning techniques.
Our research establishes a conceptual structure for applying reinforcement learning framework to credit limit adjustment.
arXiv Detail & Related papers (2023-06-27T16:10:36Z) - Constrained Policy Optimization for Controlled Self-Learning in
Conversational AI Systems [18.546197100318693]
We introduce a scalable framework for supporting fine-grained exploration targets for individual domains via user-defined constraints.
We present a novel meta-gradient learning approach that is scalable and practical to address this problem.
We conduct extensive experiments using data from a real-world conversational AI on a set of realistic constraint benchmarks.
arXiv Detail & Related papers (2022-09-17T23:44:13Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z) - Robust Batch Policy Learning in Markov Decision Processes [0.0]
We study the offline data-driven sequential decision making problem in the framework of Markov decision process (MDP)
We propose to evaluate each policy by a set of the average rewards with respect to distributions centered at the policy induced stationary distribution.
arXiv Detail & Related papers (2020-11-09T04:41:21Z) - Doubly Robust Off-Policy Value and Gradient Estimation for Deterministic
Policies [80.42316902296832]
We study the estimation of policy value and gradient of a deterministic policy from off-policy data when actions are continuous.
In this setting, standard importance sampling and doubly robust estimators for policy value and gradient fail because the density ratio does not exist.
We propose several new doubly robust estimators based on different kernelization approaches.
arXiv Detail & Related papers (2020-06-06T15:52:05Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.