Quantile-Optimal Policy Learning under Unmeasured Confounding
- URL: http://arxiv.org/abs/2506.07140v1
- Date: Sun, 08 Jun 2025 13:37:38 GMT
- Title: Quantile-Optimal Policy Learning under Unmeasured Confounding
- Authors: Zhongren Chen, Siyu Chen, Zhengling Qi, Xiaohong Chen, Zhuoran Yang,
- Abstract summary: We study quantile-optimal policy learning where the goal is to find a policy whose reward distribution has the largest $alpha$-quantile for some $alpha in (0, 1)$.<n>Such a problem suffers from three main challenges: (i) nonlinearity of the quantile objective as a functional of the reward distribution, (ii) unobserved confounding issue, and (iii) insufficient coverage of the offline dataset.
- Score: 55.72891849926314
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study quantile-optimal policy learning where the goal is to find a policy whose reward distribution has the largest $\alpha$-quantile for some $\alpha \in (0, 1)$. We focus on the offline setting whose generating process involves unobserved confounders. Such a problem suffers from three main challenges: (i) nonlinearity of the quantile objective as a functional of the reward distribution, (ii) unobserved confounding issue, and (iii) insufficient coverage of the offline dataset. To address these challenges, we propose a suite of causal-assisted policy learning methods that provably enjoy strong theoretical guarantees under mild conditions. In particular, to address (i) and (ii), using causal inference tools such as instrumental variables and negative controls, we propose to estimate the quantile objectives by solving nonlinear functional integral equations. Then we adopt a minimax estimation approach with nonparametric models to solve these integral equations, and propose to construct conservative policy estimates that address (iii). The final policy is the one that maximizes these pessimistic estimates. In addition, we propose a novel regularized policy learning method that is more amenable to computation. Finally, we prove that the policies learned by these methods are $\tilde{\mathscr{O}}(n^{-1/2})$ quantile-optimal under a mild coverage assumption on the offline dataset. Here, $\tilde{\mathscr{O}}(\cdot)$ omits poly-logarithmic factors. To the best of our knowledge, we propose the first sample-efficient policy learning algorithms for estimating the quantile-optimal policy when there exist unmeasured confounding.
Related papers
- Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning [66.4260157478436]
We study reinforcement learning in the policy learning setting.<n>The goal is to find a policy whose performance is competitive with the best policy in a given class of interest.
arXiv Detail & Related papers (2025-07-06T14:40:05Z) - Distributionally Robust Policy Learning under Concept Drifts [33.44768994272614]
This paper studies a more nuanced problem -- robust policy learning under the concept drift.<n>We first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy.<n>We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class.
arXiv Detail & Related papers (2024-12-18T19:53:56Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Importance Weighted Actor-Critic for Optimal Conservative Offline
Reinforcement Learning [23.222448307481073]
We propose a new practical algorithm for offline reinforcement learning (RL) in complex environments with insufficient data coverage.
Our algorithm combines the marginalized importance sampling framework with the actor-critic paradigm.
We provide both theoretical analysis and experimental results to validate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T07:53:53Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.<n>Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.<n>We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Randomized Policy Optimization for Optimal Stopping [0.0]
We propose a new methodology for optimal stopping based on randomized linear policies.
We show that our approach can substantially outperform state-of-the-art methods.
arXiv Detail & Related papers (2022-03-25T04:33:15Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.