Deep Multi-attribute Graph Representation Learning on Protein Structures
- URL: http://arxiv.org/abs/2012.11762v1
- Date: Tue, 22 Dec 2020 00:30:19 GMT
- Title: Deep Multi-attribute Graph Representation Learning on Protein Structures
- Authors: Tian Xia, Wei-Shinn Ku
- Abstract summary: We propose a new graph neural network architecture to represent the proteins as 3D graphs and predict both distance geometric graph representation and dihedral geometric graph representation together.
We conducted extensive experiments on four different datasets and demonstrated the effectiveness of the proposed method.
- Score: 15.805068154706571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs as a type of data structure have recently attracted significant
attention. Representation learning of geometric graphs has achieved great
success in many fields including molecular, social, and financial networks. It
is natural to present proteins as graphs in which nodes represent the residues
and edges represent the pairwise interactions between residues. However, 3D
protein structures have rarely been studied as graphs directly. The challenges
include: 1) Proteins are complex macromolecules composed of thousands of atoms
making them much harder to model than micro-molecules. 2) Capturing the
long-range pairwise relations for protein structure modeling remains
under-explored. 3) Few studies have focused on learning the different
attributes of proteins together. To address the above challenges, we propose a
new graph neural network architecture to represent the proteins as 3D graphs
and predict both distance geometric graph representation and dihedral geometric
graph representation together. This gives a significant advantage because this
network opens a new path from the sequence to structure. We conducted extensive
experiments on four different datasets and demonstrated the effectiveness of
the proposed method.
Related papers
- A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Conditional Graph Information Bottleneck for Molecular Relational
Learning [9.56625683182106]
We propose a novel relational learning framework, CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein.
Our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with.
arXiv Detail & Related papers (2023-04-29T01:17:43Z) - EquiPocket: an E(3)-Equivariant Geometric Graph Neural Network for Ligand Binding Site Prediction [49.674494450107005]
Predicting the binding sites of target proteins plays a fundamental role in drug discovery.
Most existing deep-learning methods consider a protein as a 3D image by spatially clustering its atoms into voxels.
This work proposes EquiPocket, an E(3)-equivariant Graph Neural Network (GNN) for binding site prediction.
arXiv Detail & Related papers (2023-02-23T17:18:26Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Pre-training Molecular Graph Representation with 3D Geometry [39.35244035710228]
Molecular graphs are typically modeled by their 2D topological structures.
Lack of 3D information in real-world scenarios has significantly impeded the learning of geometric graph representation.
We propose the Graph Multi-View Pre-training (GraphMVP) framework where self-supervised learning is performed by leveraging the correspondence and consistency between 2D topological structures and 3D geometric views.
arXiv Detail & Related papers (2021-10-07T17:48:57Z) - Learning from Protein Structure with Geometric Vector Perceptrons [6.5360079597553025]
We introduce geometric vector perceptrons, which extend standard dense layers to operate on collections of Euclidean vectors.
We demonstrate our approach on two important problems in learning from protein structure: model quality assessment and computational protein design.
arXiv Detail & Related papers (2020-09-03T01:54:25Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
We propose a geometric scattering autoencoder (GSAE) network for learning such graph embeddings.
Our embedding network first extracts rich graph features using the recently proposed geometric scattering transform.
We show that GSAE organizes RNA graphs both by structure and energy, accurately reflecting bistable RNA structures.
arXiv Detail & Related papers (2020-06-12T00:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.