Conditional Graph Information Bottleneck for Molecular Relational
Learning
- URL: http://arxiv.org/abs/2305.01520v2
- Date: Sun, 9 Jul 2023 23:30:46 GMT
- Title: Conditional Graph Information Bottleneck for Molecular Relational
Learning
- Authors: Namkyeong Lee, Dongmin Hyun, Gyoung S. Na, Sungwon Kim, Junseok Lee,
Chanyoung Park
- Abstract summary: We propose a novel relational learning framework, CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein.
Our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with.
- Score: 9.56625683182106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular relational learning, whose goal is to learn the interaction
behavior between molecular pairs, got a surge of interest in molecular sciences
due to its wide range of applications. Recently, graph neural networks have
recently shown great success in molecular relational learning by modeling a
molecule as a graph structure, and considering atom-level interactions between
two molecules. Despite their success, existing molecular relational learning
methods tend to overlook the nature of chemistry, i.e., a chemical compound is
composed of multiple substructures such as functional groups that cause
distinctive chemical reactions. In this work, we propose a novel relational
learning framework, called CGIB, that predicts the interaction behavior between
a pair of graphs by detecting core subgraphs therein. The main idea is, given a
pair of graphs, to find a subgraph from a graph that contains the minimal
sufficient information regarding the task at hand conditioned on the paired
graph based on the principle of conditional graph information bottleneck. We
argue that our proposed method mimics the nature of chemical reactions, i.e.,
the core substructure of a molecule varies depending on which other molecule it
interacts with. Extensive experiments on various tasks with real-world datasets
demonstrate the superiority of CGIB over state-of-the-art baselines. Our code
is available at https://github.com/Namkyeong/CGIB.
Related papers
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
We introduce the textbf Structural Similarity Motif GNN (MSSM-GNN), a novel molecular graph representation learning method.
In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively.
We employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information.
arXiv Detail & Related papers (2024-09-13T06:59:10Z) - Molecular Property Prediction Based on Graph Structure Learning [29.516479802217205]
We propose a graph structure learning (GSL) based MPP approach, called GSL-MPP.
Specifically, we first apply graph neural network (GNN) over molecular graphs to extract molecular representations.
With molecular fingerprints, we construct a molecular similarity graph (MSG)
arXiv Detail & Related papers (2023-12-28T06:45:13Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
We introduce MolGrapher to recognize chemical structures visually.
We treat all candidate atoms and bonds as nodes and put them in a graph.
We classify atom and bond nodes in the graph with a Graph Neural Network.
arXiv Detail & Related papers (2023-08-23T16:16:11Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Molecular Contrastive Learning with Chemical Element Knowledge Graph [16.136921143416927]
Molecular representation learning contributes to multiple downstream tasks such as molecular property prediction and drug design.
We construct a Chemical Element Knowledge Graph (KG) to summarize microscopic associations between elements.
The first module, knowledge-guided graph augmentation, augments the original molecular graph based on the Chemical Element KG.
The second module, knowledge-aware graph representation, extracts molecular representations with a common graph encoder for the original molecular graph and a Knowledge-aware Message Passing Neural Network (KMPNN) to encode complex information in the augmented molecular graph.
arXiv Detail & Related papers (2021-12-01T15:04:39Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.