Few-Shot Text Generation with Pattern-Exploiting Training
- URL: http://arxiv.org/abs/2012.11926v1
- Date: Tue, 22 Dec 2020 10:53:07 GMT
- Title: Few-Shot Text Generation with Pattern-Exploiting Training
- Authors: Timo Schick and Hinrich Sch\"utze
- Abstract summary: In this paper, we show that the underlying idea can also be applied to text generation tasks.
We adapt Pattern-Exploiting Training (PET), a recently proposed few-shot approach, for finetuning generative language models on text generation tasks.
- Score: 12.919486518128734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Providing pretrained language models with simple task descriptions or prompts
in natural language yields impressive few-shot results for a wide range of text
classification tasks when combined with gradient-based learning from examples.
In this paper, we show that the underlying idea can also be applied to text
generation tasks: We adapt Pattern-Exploiting Training (PET), a recently
proposed few-shot approach, for finetuning generative language models on text
generation tasks. On several text summarization and headline generation
datasets, our proposed variant of PET gives consistent improvements over a
strong baseline in few-shot settings.
Related papers
- Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques [0.0]
This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning.
The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal.
Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling.
Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations are employed to fine-tune the models and handle complex linguistic tasks effectively.
arXiv Detail & Related papers (2024-10-17T12:43:49Z) - Retrieval is Accurate Generation [99.24267226311157]
We introduce a novel method that selects context-aware phrases from a collection of supporting documents.
Our model achieves the best performance and the lowest latency among several retrieval-augmented baselines.
arXiv Detail & Related papers (2024-02-27T14:16:19Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Grad2Task: Improved Few-shot Text Classification Using Gradients for
Task Representation [24.488427641442694]
We propose a novel conditional neural process-based approach for few-shot text classification.
Our key idea is to represent each task using gradient information from a base model.
Our approach outperforms traditional fine-tuning, sequential transfer learning, and state-of-the-art meta learning approaches.
arXiv Detail & Related papers (2022-01-27T15:29:30Z) - LAFITE: Towards Language-Free Training for Text-to-Image Generation [83.2935513540494]
We propose the first work to train text-to-image generation models without any text data.
Our method leverages the well-aligned multi-modal semantic space of the powerful pre-trained CLIP model.
We obtain state-of-the-art results in the standard text-to-image generation tasks.
arXiv Detail & Related papers (2021-11-27T01:54:45Z) - Pretrained Language Models for Text Generation: A Survey [46.03096493973206]
We present an overview of the major advances achieved in the topic of pretrained language models (PLMs) for text generation.
We discuss how to adapt existing PLMs to model different input data and satisfy special properties in the generated text.
arXiv Detail & Related papers (2021-05-21T12:27:44Z) - Progressive Generation of Long Text with Pretrained Language Models [83.62523163717448]
Large-scale language models (LMs) pretrained on massive corpora of text, such as GPT-2, are powerful open-domain text generators.
It is still challenging for such models to generate coherent long passages of text, especially when the models are fine-tuned to the target domain on a small corpus.
We propose a simple but effective method of generating text in a progressive manner, inspired by generating images from low to high resolution.
arXiv Detail & Related papers (2020-06-28T21:23:05Z) - Pre-training via Paraphrasing [96.79972492585112]
We introduce MARGE, a pre-trained sequence-to-sequence model learned with an unsupervised multi-lingual paraphrasing objective.
We show it is possible to jointly learn to do retrieval and reconstruction, given only a random initialization.
For example, with no additional task-specific training we achieve BLEU scores of up to 35.8 for document translation.
arXiv Detail & Related papers (2020-06-26T14:43:43Z) - QURIOUS: Question Generation Pretraining for Text Generation [13.595014409069584]
We propose question generation as a pretraining method, which better aligns with the text generation objectives.
Our text generation models pretrained with this method are better at understanding the essence of the input and are better language models for the target task.
arXiv Detail & Related papers (2020-04-23T08:41:52Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
Self-supervised pre-training has emerged as a powerful technique for natural language understanding and generation.
This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus.
An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks.
arXiv Detail & Related papers (2020-04-14T06:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.