Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques
- URL: http://arxiv.org/abs/2410.13498v1
- Date: Thu, 17 Oct 2024 12:43:49 GMT
- Title: Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques
- Authors: Rahimanuddin Shaik, Katikela Sreeharsha Kishore,
- Abstract summary: This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning.
The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal.
Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling.
Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations are employed to fine-tune the models and handle complex linguistic tasks effectively.
- Score: 0.0
- License:
- Abstract: Text generation is the automated process of producing written or spoken language using computational methods. It involves generating coherent and contextually relevant text based on predefined rules or learned patterns. However, challenges in text generation arise from maintaining coherence, ensuring diversity and creativity, and avoiding biases or inappropriate content. This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning. The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal. Feature extraction techniques such as POS tagging, Bag of words, and Term Frequency-Inverse Document Frequency (TF-IDF) are applied. Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling. Pre-trained language models like Optimized BERT are incorporated, along with a Hybrid Redfox Artificial Hummingbird Algorithm (HRAHA). Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations like straight-through Gumbel SoftMax estimator are employed to fine-tune the models and handle complex linguistic tasks effectively. The proposed model is implemented using Python.
Related papers
- Harnessing the Plug-and-Play Controller by Prompting [12.705251690623495]
This paper introduces a novel method for flexible attribute control in text generation using pre-trained language models (PLMs)
The proposed approach aims to enhance the fluency of generated text by guiding the generation process with PPCs.
arXiv Detail & Related papers (2024-02-06T17:18:25Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
Conceptually, LOCCO can be viewed as a form of self-learning where the semantic being trained is used to generate annotations for unlabeled text.
As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model.
arXiv Detail & Related papers (2023-05-31T16:47:20Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Step-unrolled Denoising Autoencoders for Text Generation [17.015573262373742]
We propose a new generative model of text, Step-unrolled Denoising Autoencoder (SUNDAE)
SUNDAE is repeatedly applied on a sequence of tokens, starting from random inputs and improving them each time until convergence.
We present a simple new improvement operator that converges in fewer iterations than diffusion methods.
arXiv Detail & Related papers (2021-12-13T16:00:33Z) - Data Augmentation in Natural Language Processing: A Novel Text
Generation Approach for Long and Short Text Classifiers [8.19984844136462]
We present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts.
In a simulated low data regime additive accuracy gains of up to 15.53% are achieved.
We discuss implications and patterns for the successful application of our approach on different types of datasets.
arXiv Detail & Related papers (2021-03-26T13:16:07Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
We propose using optimal transport (OT) to match the sequences generated in training and testing modes.
An extension is also proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
arXiv Detail & Related papers (2020-10-12T19:42:25Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
Self-supervised pre-training has emerged as a powerful technique for natural language understanding and generation.
This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus.
An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks.
arXiv Detail & Related papers (2020-04-14T06:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.