A Feasibility study for Deep learning based automated brain tumor
segmentation using Magnetic Resonance Images
- URL: http://arxiv.org/abs/2012.11952v1
- Date: Tue, 22 Dec 2020 12:11:42 GMT
- Title: A Feasibility study for Deep learning based automated brain tumor
segmentation using Magnetic Resonance Images
- Authors: Shanaka Ramesh Gunasekara, HNTK Kaldera, Maheshi B. Dissanayake
- Abstract summary: A deep convolutional neural network (CNN) based classification network and Faster RCNN based localization network were developed for brain tumor MR image classification and tumor localization.
Overall performance of the proposed tumor segmentation architecture, was analyzed using objective quality parameters including Accuracy, Boundary Displacement Error (BDE), Dice score and confidence interval.
It was observed that the confidence level of our segmented output was in a similar range to that of experts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning algorithms have accounted for the rapid acceleration of
research in artificial intelligence in medical image analysis, interpretation,
and segmentation with many potential applications across various sub
disciplines in medicine. However, only limited number of research which
investigates these application scenarios, are deployed into the clinical sector
for the evaluation of the real requirement and the practical challenges of the
model deployment. In this research, a deep convolutional neural network (CNN)
based classification network and Faster RCNN based localization network were
developed for brain tumor MR image classification and tumor localization. A
typical edge detection algorithm called Prewitt was used for tumor segmentation
task, based on the output of the tumor localization. Overall performance of the
proposed tumor segmentation architecture, was analyzed using objective quality
parameters including Accuracy, Boundary Displacement Error (BDE), Dice score
and confidence interval. A subjective quality assessment of the model was
conducted based on the Double Stimulus Impairment Scale (DSIS) protocol using
the input of medical expertise. It was observed that the confidence level of
our segmented output was in a similar range to that of experts. Also, the
Neurologists have rated the output of our model as highly accurate
segmentation.
Related papers
- Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
Brain tumors are one of the deadliest forms of cancer with a mortality rate of over 80%.
In medical analysis, the manual annotation and segmentation of a brain tumor can be a complicated task.
This paper proposes a region of interest detection algorithm that is implemented during data preprocessing to locate salient features and remove extraneous MRI data.
A fully convolutional autoencoder with soft attention segments the different brain MRIs.
arXiv Detail & Related papers (2023-12-31T20:42:52Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Brain Tumor MRI Classification using a Novel Deep Residual and Regional
CNN [0.0]
A novel deep residual and regional-based Res-BRNet Convolutional Neural Network (CNN) is developed for effective brain tumor (Magnetic Resonance Imaging) MRI classification.
The efficiency of the developed Res-BRNet is evaluated on a standard dataset; collected from Kaggle and Figshare containing various tumor categories.
Experiments prove that the developed Res-BRNet outperforms the standard CNN models and attained excellent performances.
arXiv Detail & Related papers (2022-11-29T20:14:13Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients [31.567542945171834]
We describe the Brain Tumor Sequence Registration (BraTS-Reg) challenge.
BraTS-Reg is the first public benchmark environment for deformable registration algorithms.
The aim of BraTS-Reg is to continue to serve as an active resource for research.
arXiv Detail & Related papers (2021-12-13T19:25:16Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.