Latent Feature Representation via Unsupervised Learning for Pattern
Discovery in Massive Electron Microscopy Image Volumes
- URL: http://arxiv.org/abs/2012.12175v1
- Date: Tue, 22 Dec 2020 17:14:19 GMT
- Title: Latent Feature Representation via Unsupervised Learning for Pattern
Discovery in Massive Electron Microscopy Image Volumes
- Authors: Gary B Huang and Huei-Fang Yang and Shin-ya Takemura and Pat Rivlin
and Stephen M Plaza
- Abstract summary: In particular, we give an unsupervised deep learning approach to learning a latent representation that captures semantic similarity in the data set.
We demonstrate the utility of our method applied to nano-scale electron microscopy data, where even relatively small portions of animal brains can require terabytes of image data.
- Score: 4.278591555984395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method to facilitate exploration and analysis of new large data
sets. In particular, we give an unsupervised deep learning approach to learning
a latent representation that captures semantic similarity in the data set. The
core idea is to use data augmentations that preserve semantic meaning to
generate synthetic examples of elements whose feature representations should be
close to one another.
We demonstrate the utility of our method applied to nano-scale electron
microscopy data, where even relatively small portions of animal brains can
require terabytes of image data. Although supervised methods can be used to
predict and identify known patterns of interest, the scale of the data makes it
difficult to mine and analyze patterns that are not known a priori. We show the
ability of our learned representation to enable query by example, so that if a
scientist notices an interesting pattern in the data, they can be presented
with other locations with matching patterns. We also demonstrate that
clustering of data in the learned space correlates with biologically-meaningful
distinctions. Finally, we introduce a visualization tool and software ecosystem
to facilitate user-friendly interactive analysis and uncover interesting
biological patterns. In short, our work opens possible new avenues in
understanding of and discovery in large data sets, arising in domains such as
EM analysis.
Related papers
- Interactive dense pixel visualizations for time series and model attribution explanations [8.24039921933289]
DAVOTS is an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization.
We apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration.
arXiv Detail & Related papers (2024-08-27T14:02:21Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Generation of microbial colonies dataset with deep learning style
transfer [0.0]
We introduce a strategy to generate a synthetic dataset of microbiological images of Petri dishes that can be used to train deep learning models.
We show that the method is able to synthesize a dataset of realistic looking images that can be used to train a neural network model capable of localising, segmenting, and classifying five different microbial species.
arXiv Detail & Related papers (2021-11-06T03:11:01Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
We propose training deep network models to predict system-level states directly from generic graphical features from the entire view.
Because the resulting predictive models are not based on human-understood predictors, we use explanatory modules.
This represents an example of augmented intelligence in behavioral ecology -- knowledge co-creation in a human-AI team.
arXiv Detail & Related papers (2021-08-20T22:50:41Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - FDive: Learning Relevance Models using Pattern-based Similarity Measures [27.136998442865217]
We present FDive, a visual active learning system that helps to create visually explorable relevance models.
Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model.
It also automatically prompts further relevance feedback to improve its accuracy.
arXiv Detail & Related papers (2019-07-29T15:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.