Interactive dense pixel visualizations for time series and model attribution explanations
- URL: http://arxiv.org/abs/2408.15073v1
- Date: Tue, 27 Aug 2024 14:02:21 GMT
- Title: Interactive dense pixel visualizations for time series and model attribution explanations
- Authors: Udo Schlegel, Daniel A. Keim,
- Abstract summary: DAVOTS is an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization.
We apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration.
- Score: 8.24039921933289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of Explainable Artificial Intelligence (XAI) for Deep Neural Network models has developed significantly, offering numerous techniques to extract explanations from models. However, evaluating explanations is often not trivial, and differences in applied metrics can be subtle, especially with non-intelligible data. Thus, there is a need for visualizations tailored to explore explanations for domains with such data, e.g., time series. We propose DAVOTS, an interactive visual analytics approach to explore raw time series data, activations of neural networks, and attributions in a dense-pixel visualization to gain insights into the data, models' decisions, and explanations. To further support users in exploring large datasets, we apply clustering approaches to the visualized data domains to highlight groups and present ordering strategies for individual and combined data exploration to facilitate finding patterns. We visualize a CNN trained on the FordA dataset to demonstrate the approach.
Related papers
- Automatic Discovery of Visual Circuits [66.99553804855931]
We explore scalable methods for extracting the subgraph of a vision model's computational graph that underlies recognition of a specific visual concept.
We find that our approach extracts circuits that causally affect model output, and that editing these circuits can defend large pretrained models from adversarial attacks.
arXiv Detail & Related papers (2024-04-22T17:00:57Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - The Deep Latent Position Topic Model for Clustering and Representation
of Networks with Textual Edges [2.6334900941196087]
Deep-LPTM is a model-based clustering strategy based on a variational graph auto-encoder approach.
The emails of the Enron company are analysed and visualisations of the results are presented.
arXiv Detail & Related papers (2023-04-14T07:01:57Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation [22.688772441351308]
Methods based on class activation mapping and randomized input sampling have gained great popularity.
However, the attribution methods provide lower resolution and blurry explanation maps that limit their explanation power.
In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique.
We also propose a layer selection strategy that applies to the whole family of CNN-based models.
arXiv Detail & Related papers (2020-10-01T20:27:30Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
We propose the agglomerative analysis to approximate the optimal consensus view.
We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly.
Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN.
arXiv Detail & Related papers (2020-05-12T05:39:10Z) - Genetic Programming for Evolving a Front of Interpretable Models for
Data Visualisation [4.4181317696554325]
We propose a genetic programming approach named GPtSNE for evolving interpretable mappings from a dataset to high-quality visualisations.
A multi-objective approach is designed that produces a variety of visualisations in a single run which give different trade-offs between visual quality and model complexity.
arXiv Detail & Related papers (2020-01-27T04:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.