Automated Multi-Channel Segmentation for the 4D Myocardial Velocity
Mapping Cardiac MR
- URL: http://arxiv.org/abs/2012.12188v1
- Date: Wed, 16 Dec 2020 16:15:55 GMT
- Title: Automated Multi-Channel Segmentation for the 4D Myocardial Velocity
Mapping Cardiac MR
- Authors: Yinzhe Wu, Suzan Hatipoglu, Diego Alonso-\'Alvarez, Peter Gatehouse,
David Firmin, Jennifer Keegan, Guang Yang
- Abstract summary: Four-dimensional (4D) left ventricular myocardial velocity mapping (MVM) is a cardiac magnetic resonance (CMR) technique.
We propose a novel framework that improves the standard U-Net based methods on these CMR multi-channel data.
Our proposed network trained with multi-channel data shows enhanced performance compared to standard U-Net based networks trained with single-channel data.
- Score: 1.8653386811342048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Four-dimensional (4D) left ventricular myocardial velocity mapping (MVM) is a
cardiac magnetic resonance (CMR) technique that allows assessment of cardiac
motion in three orthogonal directions. Accurate and reproducible delineation of
the myocardium is crucial for accurate analysis of peak systolic and diastolic
myocardial velocities. In addition to the conventionally available magnitude
CMR data, 4D MVM also acquires three velocity-encoded phase datasets which are
used to generate velocity maps. These can be used to facilitate and improve
myocardial delineation. Based on the success of deep learning in medical image
processing, we propose a novel automated framework that improves the standard
U-Net based methods on these CMR multi-channel data (magnitude and phase) by
cross-channel fusion with attention module and shape information based
post-processing to achieve accurate delineation of both epicardium and
endocardium contours. To evaluate the results, we employ the widely used Dice
scores and the quantification of myocardial longitudinal peak velocities. Our
proposed network trained with multi-channel data shows enhanced performance
compared to standard U-Net based networks trained with single-channel data.
Based on the results, our method provides compelling evidence for the design
and application for the multi-channel image analysis of the 4D MVM CMR data.
Related papers
- Neural Fields for Continuous Periodic Motion Estimation in 4D Cardiovascular Imaging [1.1786989970743633]
Time-resolved three-dimensional flow MRI (4D flow MRI) provides a unique non-invasive solution to visualize and quantify hemodynamics in blood vessels such as the aortic arch.
Most current analysis methods for arterial 4D flow MRI use static artery walls because of the difficulty in obtaining a full cycle segmentation.
We propose a neural fields-based method that directly estimates continuous periodic wall deformations throughout the cardiac cycle.
arXiv Detail & Related papers (2024-07-30T10:50:51Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Error correcting 2D-3D cascaded network for myocardial infarct scar
segmentation on late gadolinium enhancement cardiac magnetic resonance images [0.0]
We propose a cascaded framework of two-dimensional and three-dimensional convolutional neural networks (CNNs) which enables to calculate the extent of myocardial infarction in a fully automated way.
The proposed method was trained and evaluated in a five-fold cross validation using the training dataset from the EMIDEC challenge.
arXiv Detail & Related papers (2023-06-26T14:21:18Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - HDL: Hybrid Deep Learning for the Synthesis of Myocardial Velocity Maps
in Digital Twins for Cardiac Analysis [12.999677043271133]
We propose a hybrid deep learning (HDL) network, especially for synthetic 3Dir MVM data.
Our proposed algorithm can still successfully synthesise high temporal resolution 3Dir MVM CMR data.
This work is the first one in the literature investigating digital twins of the 3Dir MVM CMR.
arXiv Detail & Related papers (2022-03-09T23:22:56Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left
Ventricle Delineation from Myocardial Velocity Mapping [1.8653386811342048]
We propose a novel fully automated framework incorporating a 3D-UNet backbone architecture with Embedded multichannel Attention mechanism and LSTM based Recurrent neural networks (RNN) for the MVM-CMR datasets.
By comparing the baseline model of 3D-UNet and ablation studies with and without embedded attentive LSTM modules and various loss functions, we can demonstrate that the proposed model has outperformed the state-of-the-art baseline models with significant improvement.
arXiv Detail & Related papers (2021-04-26T11:04:43Z) - Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle
Quantification [6.887389908965403]
We propose a learning-temporal multi-task approach to obtain a complete set of measurements of cardiac left ventricle (LV) morphology.
We first segment LVs using an encoder-decoder network and then introduce a framework to regress 11 LV indices and classify the cardiac phase.
The proposed model is based on the 3D-temporal convolutions, which extract spatial and features from MR images.
arXiv Detail & Related papers (2020-12-24T17:48:35Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.