CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction
- URL: http://arxiv.org/abs/2309.10836v1
- Date: Tue, 19 Sep 2023 15:14:42 GMT
- Title: CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction
- Authors: Chengyan Wang, Jun Lyu, Shuo Wang, Chen Qin, Kunyuan Guo, Xinyu Zhang,
Xiaotong Yu, Yan Li, Fanwen Wang, Jianhua Jin, Zhang Shi, Ziqiang Xu, Yapeng
Tian, Sha Hua, Zhensen Chen, Meng Liu, Mengting Sun, Xutong Kuang, Kang Wang,
Haoran Wang, Hao Li, Yinghua Chu, Guang Yang, Wenjia Bai, Xiahai Zhuang, He
Wang, Jing Qin, Xiaobo Qu
- Abstract summary: There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
- Score: 62.61209705638161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac magnetic resonance imaging (CMR) has emerged as a valuable diagnostic
tool for cardiac diseases. However, a limitation of CMR is its slow imaging
speed, which causes patient discomfort and introduces artifacts in the images.
There has been growing interest in deep learning-based CMR imaging algorithms
that can reconstruct high-quality images from highly under-sampled k-space
data. However, the development of deep learning methods requires large training
datasets, which have not been publicly available for CMR. To address this gap,
we released a dataset that includes multi-contrast, multi-view, multi-slice and
multi-coil CMR imaging data from 300 subjects. Imaging studies include cardiac
cine and mapping sequences. Manual segmentations of the myocardium and chambers
of all the subjects are also provided within the dataset. Scripts of
state-of-the-art reconstruction algorithms were also provided as a point of
reference. Our aim is to facilitate the advancement of state-of-the-art CMR
image reconstruction by introducing standardized evaluation criteria and making
the dataset freely accessible to the research community. Researchers can access
the dataset at https://www.synapse.org/#!Synapse:syn51471091/wiki/.
Related papers
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
Fast MRI reconstruction aims to restore high-quality images from the undersampled k-space.
Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images.
We propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance.
arXiv Detail & Related papers (2024-11-18T04:54:04Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Attention Incorporated Network for Sharing Low-rank, Image and K-space Information during MR Image Reconstruction to Achieve Single Breath-hold Cardiac Cine Imaging [9.531827741901662]
We propose to embed information from multiple domains, including low-rank, image, and k-space, in a novel deep learning network for MRI reconstruction.
A-LIKNet adopts a parallel-branch structure, enabling independent learning in the k-space and image domain.
arXiv Detail & Related papers (2024-07-03T11:54:43Z) - CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI [39.0162369912624]
The CMRxRecon2024 dataset is the largest and most diverse publicly available cardiac k-space dataset.
It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI.
arXiv Detail & Related papers (2024-06-27T09:50:20Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Multimodal Representation Learning of Cardiovascular Magnetic Resonance
Imaging [11.887706872979697]
We propose textbfCMRformer, a multimodal learning framework to jointly learn sequences of CMR images and associated cardiologist's reports.
Our work could potentially expedite progress in the CMR study and lead to more accurate and effective diagnosis and treatment.
arXiv Detail & Related papers (2023-04-16T02:35:27Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.