論文の概要: Group-Aware Robot Navigation in Crowded Environments
- arxiv url: http://arxiv.org/abs/2012.12291v1
- Date: Tue, 22 Dec 2020 19:04:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:14:40.848114
- Title: Group-Aware Robot Navigation in Crowded Environments
- Title(参考訳): 群集環境におけるグループ対応ロボットナビゲーション
- Authors: Kapil Katyal, Yuxiang Gao, Jared Markowitz, I-Jeng Wang, Chien-Ming
Huang
- Abstract要約: 本稿では,深層強化学習を用いた動的グループ形成に基づく学習グループ対応ナビゲーションポリシーについて検討する。
我々は,人間集団を無視する基本方針と比較して,ロボットのナビゲーション性能が向上することを示す。
本研究は,ソーシャルナビゲーションの開発と,移動ロボットの人間環境への統合に寄与する。
- 参考スコア(独自算出の注目度): 8.154698016722815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-aware robot navigation promises a range of applications in which mobile
robots bring versatile assistance to people in common human environments. While
prior research has mostly focused on modeling pedestrians as independent,
intentional individuals, people move in groups; consequently, it is imperative
for mobile robots to respect human groups when navigating around people. This
paper explores learning group-aware navigation policies based on dynamic group
formation using deep reinforcement learning. Through simulation experiments, we
show that group-aware policies, compared to baseline policies that neglect
human groups, achieve greater robot navigation performance (e.g., fewer
collisions), minimize violation of social norms and discomfort, and reduce the
robot's movement impact on pedestrians. Our results contribute to the
development of social navigation and the integration of mobile robots into
human environments.
- Abstract(参考訳): 人間を意識したロボットナビゲーションは、モバイルロボットが共通の人間環境の人々に多目的支援をもたらす様々なアプリケーションを実現する。
これまでの研究では、歩行者を独立した、意図的な個人としてモデル化することを中心に研究されてきたが、人々は集団で移動する。
本稿では,深層強化学習を用いた動的グループ形成に基づく学習グループ対応ナビゲーションポリシーについて検討する。
シミュレーション実験により,人間集団を無視する基本方針と比較して,ロボットナビゲーション性能の向上(衝突の低減など),社会規範の違反や不快感の最小化,歩行者に対するロボットの動きへの影響の低減などが示された。
本研究は,ソーシャルナビゲーションの開発と,移動ロボットの人間環境への統合に寄与する。
関連論文リスト
- Aligning Robot Navigation Behaviors with Human Intentions and Preferences [2.9914612342004503]
この論文は,「自律移動ロボットのナビゲーション行動と人間の意図と嗜好を一致させるために,機械学習手法をどのように利用できるのか?」という疑問に答えることを目的としている。
第一に、この論文は、意図したナビゲーションタスクの人間が提供する実演を模倣することにより、ナビゲーション行動を学ぶための新しいアプローチを導入している。
第二に、この論文は、視覚的な地形認識を自己監督的に学習することで、移動ロボットの地形認識オフロードナビゲーションを強化する2つのアルゴリズムを導入している。
論文 参考訳(メタデータ) (2024-09-16T03:45:00Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning [0.7864304771129751]
移動ロボットは様々な混み合った状況で大規模に使われており、私たちの社会の一部になっている。
個人を考慮した移動ロボットの社会的に許容されるナビゲーション行動は、スケーラブルなアプリケーションと人間の受容にとって必須の要件である。
本稿では,ロボットの社会行動が適応的であり,人間との相互作用から生じる,社会統合型ナビゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T18:25:40Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - Social Navigation with Human Empowerment driven Deep Reinforcement
Learning [20.815007485176615]
次世代のモバイルロボットは、人間の協力者によって受け入れられるために、社会的に準拠する必要がある。
本稿では,古典的acfRLのアプローチを超えて,エンパワーメントを用いた本質的なモチベーションをエージェントに提供する。
我々のアプローチは、人間との距離を最小化し、それによって、効率的に目標に向かって移動しながら、人間の移動時間を短縮するので、人間に肯定的な影響を与える。
論文 参考訳(メタデータ) (2020-03-18T11:16:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。