MG-SAGC: A multiscale graph and its self-adaptive graph convolution
network for 3D point clouds
- URL: http://arxiv.org/abs/2012.12445v1
- Date: Wed, 23 Dec 2020 01:58:41 GMT
- Title: MG-SAGC: A multiscale graph and its self-adaptive graph convolution
network for 3D point clouds
- Authors: Bo Wu, Bo Lang
- Abstract summary: We propose a multiscale graph generation method for point clouds.
This approach transforms point clouds into a structured multiscale graph form that supports multiscale analysis of point clouds in the scale space.
Because traditional convolutional neural networks are not applicable to graph data with irregular neighborhoods, this paper presents an sef-adaptive convolution kernel that uses the Chebyshev graph to fit an irregular convolution filter.
- Score: 6.504546503077047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enhance the ability of neural networks to extract local point cloud
features and improve their quality, in this paper, we propose a multiscale
graph generation method and a self-adaptive graph convolution method. First, we
propose a multiscale graph generation method for point clouds. This approach
transforms point clouds into a structured multiscale graph form that supports
multiscale analysis of point clouds in the scale space and can obtain the
dimensional features of point cloud data at different scales, thus making it
easier to obtain the best point cloud features. Because traditional
convolutional neural networks are not applicable to graph data with irregular
vertex neighborhoods, this paper presents an sef-adaptive graph convolution
kernel that uses the Chebyshev polynomial to fit an irregular convolution
filter based on the theory of optimal approximation. In this paper, we adopt
max pooling to synthesize the features of different scale maps and generate the
point cloud features. In experiments conducted on three widely used public
datasets, the proposed method significantly outperforms other state-of-the-art
models, demonstrating its effectiveness and generalizability.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA) is a novel and efficient data augmentation technique.
BA diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures.
We present AdvTune, an advanced online augmentation system that integrates adversarial training.
arXiv Detail & Related papers (2023-11-10T14:04:49Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
We propose a graph-based quality enhancement network (GQE-Net) to reduce color distortion in point clouds.
GQE-Net uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently.
Experimental results show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-24T02:33:45Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds.
The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds.
arXiv Detail & Related papers (2023-02-02T08:33:36Z) - Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape
Correspondence [3.45989531033125]
This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics.
We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features.
The resulting correspondence maps show state-of-the-art performance on the benchmark datasets.
arXiv Detail & Related papers (2022-10-17T22:40:50Z) - Adaptive Graph Convolution for Point Cloud Analysis [25.175406613705274]
We propose Adaptive Graph Convolution (AdaptConv) which generates adaptive kernels for points according to their dynamically learned features.
Our method outperforms state-of-the-art point cloud classification and segmentation approaches on several benchmark datasets.
arXiv Detail & Related papers (2021-08-18T08:38:52Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - PointManifold: Using Manifold Learning for Point Cloud Classification [5.705680763604835]
We propose a point cloud classification method based on graph neural network and manifold learning.
This paper uses manifold learning algorithms to embed point cloud features for better considering continuity on the surface.
Experiments show that the proposed point cloud classification methods obtain the mean class accuracy (mA) of 90.2% and the overall accuracy (oA) of 93.2%.
arXiv Detail & Related papers (2020-10-14T16:28:19Z) - Graph Cross Networks with Vertex Infomax Pooling [69.38969610952927]
We propose a novel graph cross network (GXN) to achieve comprehensive feature learning from multiple scales of a graph.
Based on trainable hierarchical representations of a graph, GXN enables the interchange of intermediate features across scales to promote information flow.
arXiv Detail & Related papers (2020-10-05T06:34:23Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z) - Airborne LiDAR Point Cloud Classification with Graph Attention
Convolution Neural Network [5.69168146446103]
We present a graph attention convolution neural network (GACNN) that can be directly applied to the classification of unstructured 3D point clouds obtained by airborne LiDAR.
Based on the proposed graph attention convolution module, we further design an end-to-end encoder-decoder network, named GACNN, to capture multiscale features of the point clouds.
Experiments on the ISPRS 3D labeling dataset show that the proposed model achieves a new state-of-the-art performance in terms of average F1 score (71.5%) and a satisfying overall accuracy (83.2%)
arXiv Detail & Related papers (2020-04-20T05:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.