Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape
Correspondence
- URL: http://arxiv.org/abs/2210.09466v1
- Date: Mon, 17 Oct 2022 22:40:50 GMT
- Title: Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape
Correspondence
- Authors: Mohammad Farazi, Wenhui Zhu, Zhangsihao Yang, Yalin Wang
- Abstract summary: This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics.
We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features.
The resulting correspondence maps show state-of-the-art performance on the benchmark datasets.
- Score: 3.45989531033125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies 3D dense shape correspondence, a key shape analysis
application in computer vision and graphics. We introduce a novel hybrid
geometric deep learning-based model that learns geometrically meaningful and
discretization-independent features with a U-Net model as the primary node
feature extraction module, followed by a successive spectral-based graph
convolutional network. To create a diverse set of filters, we use anisotropic
wavelet basis filters, being sensitive to both different directions and
band-passes. This filter set overcomes the over-smoothing behavior of
conventional graph neural networks. To further improve the model's performance,
we add a function that perturbs the feature maps in the last layer ahead of
fully connected layers, forcing the network to learn more discriminative
features overall. The resulting correspondence maps show state-of-the-art
performance on the benchmark datasets based on average geodesic errors and
superior robustness to discretization in 3D meshes. Our approach provides new
insights and practical solutions to the dense shape correspondence research.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSM is a novel unsupervised learning approach for non-rigid shape correspondence.
We construct an affinity graph on a given set of training shapes in a self-supervised manner.
We demonstrate state-of-the-art performance on several recent shape correspondence benchmarks.
arXiv Detail & Related papers (2022-12-06T12:09:24Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - A Deep Graph Wavelet Convolutional Neural Network for Semi-supervised
Node Classification [11.959997989844043]
Graph convolutional neural network provides good solutions for node classification and other tasks with non-Euclidean data.
We propose a new deep graph wavelet convolutional network (DeepGWC) for semi-supervised node classification tasks.
arXiv Detail & Related papers (2021-02-19T07:57:28Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - MG-SAGC: A multiscale graph and its self-adaptive graph convolution
network for 3D point clouds [6.504546503077047]
We propose a multiscale graph generation method for point clouds.
This approach transforms point clouds into a structured multiscale graph form that supports multiscale analysis of point clouds in the scale space.
Because traditional convolutional neural networks are not applicable to graph data with irregular neighborhoods, this paper presents an sef-adaptive convolution kernel that uses the Chebyshev graph to fit an irregular convolution filter.
arXiv Detail & Related papers (2020-12-23T01:58:41Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
We introduce a graph convolutional network with skip connections for semi-supervised anomaly detection.
The effectiveness of our model is demonstrated through extensive experiments on five benchmark datasets.
arXiv Detail & Related papers (2020-10-20T13:45:47Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
We introduce the first learning-based method for recovering shapes from Laplacian spectra.
Given an auto-encoder, our model takes the form of a cycle-consistent module to map latent vectors to sequences of eigenvalues.
Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost.
arXiv Detail & Related papers (2020-03-14T00:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.