論文の概要: BENN: Bias Estimation Using Deep Neural Network
- arxiv url: http://arxiv.org/abs/2012.12537v1
- Date: Wed, 23 Dec 2020 08:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 18:00:35.396760
- Title: BENN: Bias Estimation Using Deep Neural Network
- Title(参考訳): BENN:ディープニューラルネットワークを用いたバイアス推定
- Authors: Amit Giloni and Edita Grolman and Tanja Hagemann and Ronald Fromm and
Sebastian Fischer and Yuval Elovici and Asaf Shabtai
- Abstract要約: 本稿では,未学習の深層ニューラルネットワークを用いた新しいバイアス推定手法であるBENNを提案する。
MLモデルとデータサンプルを与えられたBENNは、モデルの予測に基づいてすべての機能に対するバイアス推定を提供します。
3つのベンチマークデータセットと1つの独自のチャーン予測モデルを用いてBENNを評価した。
- 参考スコア(独自算出の注目度): 37.70583323420925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need to detect bias in machine learning (ML) models has led to the
development of multiple bias detection methods, yet utilizing them is
challenging since each method: i) explores a different ethical aspect of bias,
which may result in contradictory output among the different methods, ii)
provides an output of a different range/scale and therefore, can't be compared
with other methods, and iii) requires different input, and therefore a human
expert needs to be involved to adjust each method according to the examined
model. In this paper, we present BENN -- a novel bias estimation method that
uses a pretrained unsupervised deep neural network. Given a ML model and data
samples, BENN provides a bias estimation for every feature based on the model's
predictions. We evaluated BENN using three benchmark datasets and one
proprietary churn prediction model used by a European Telco and compared it
with an ensemble of 21 existing bias estimation methods. Evaluation results
highlight the significant advantages of BENN over the ensemble, as it is
generic (i.e., can be applied to any ML model) and there is no need for a
domain expert, yet it provides bias estimations that are aligned with those of
the ensemble.
- Abstract(参考訳): The need to detect bias in machine learning (ML) models has led to the development of multiple bias detection methods, yet utilizing them is challenging since each method: i) explores a different ethical aspect of bias, which may result in contradictory output among the different methods, ii) provides an output of a different range/scale and therefore, can't be compared with other methods, and iii) requires different input, and therefore a human expert needs to be involved to adjust each method according to the examined model.
本稿では,事前学習された教師なし深層ニューラルネットワークを用いたバイアス推定手法であるbennを提案する。
MLモデルとデータサンプルが与えられた場合、BENNはモデルの予測に基づいて、すべての機能のバイアス推定を提供する。
3つのベンチマークデータセットと1つの独自のチャーン予測モデルを用いてBENNを評価し、既存の21のバイアス推定手法と比較した。
評価結果は、BENNがアンサンブルよりも大きな利点を浮き彫りにしており(つまり、任意のMLモデルに適用できる)、ドメインの専門家は必要ないが、アンサンブルのモデルと整合したバイアス推定を提供する。
関連論文リスト
- Debiased Recommendation with Noisy Feedback [41.38490962524047]
収集データ中のMNARとOMEから予測モデルの非バイアス学習に対する交差点脅威について検討する。
まず, OME-EIB, OME-IPS, OME-DR推定器を設計する。
論文 参考訳(メタデータ) (2024-06-24T23:42:18Z) - MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts [25.643876327918544]
モデルのアウトプット、特にロジットを活用することは、トレーニング済みニューラルネットワークのテスト精度を、アウト・オブ・ディストリビューションのサンプルで推定する一般的なアプローチである。
実装の容易さと計算効率にもかかわらず、現在のロジットベースの手法は過信問題に弱いため、予測バイアスにつながる。
予測バイアスを低減するためにデータ依存正規化を適用したMaNoを提案し,正規化ロジットの行列の$L_p$ノルムを推定スコアとする。
論文 参考訳(メタデータ) (2024-05-29T10:45:06Z) - Addressing Bias Through Ensemble Learning and Regularized Fine-Tuning [0.2812395851874055]
本稿では,AIモデルのバイアスを取り除くために,複数の手法を用いた包括的アプローチを提案する。
我々は、データ分割、局所訓練、正規化ファインチューニングを通じて、事前訓練されたモデルのカウンターバイアスで複数のモデルを訓練する。
我々は、単一のバイアスのないニューラルネットワークをもたらす知識蒸留を用いて、ソリューションを結論付けている。
論文 参考訳(メタデータ) (2024-02-01T09:24:36Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Satellite Anomaly Detection Using Variance Based Genetic Ensemble of
Neural Networks [7.848121055546167]
複数のリカレントニューラルネットワーク(RNN)からの予測の効率的なアンサンブルを用いる。
予測のために、各RNNモデルに対して最適な構造を構築する遺伝的アルゴリズム(GA)によって、各RNNを導出する。
本稿では,BNNの近似版としてモンテカルロ(MC)ドロップアウトを用いる。
論文 参考訳(メタデータ) (2023-02-10T22:09:00Z) - Predicting Out-of-Distribution Error with the Projection Norm [87.61489137914693]
射影ノルムは、地上の真理ラベルにアクセスすることなく、分布外データ上でモデルのパフォーマンスを予測する。
対数例で非自明な検出性能を実現するには,プロジェクションノルムが唯一の方法であることがわかった。
論文 参考訳(メタデータ) (2022-02-11T18:58:21Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
コーパスレベルでバイアスを評価することは、モデルにバイアスがどのように埋め込まれているかを理解するのに十分ではない、と我々は主張する。
クラスタリングに基づく新しいバイアス検出手法であるLOGANを提案する。
毒性分類および対象分類タスクの実験は、LOGANが局所領域のバイアスを特定することを示している。
論文 参考訳(メタデータ) (2020-10-06T16:42:51Z) - One Versus all for deep Neural Network Incertitude (OVNNI)
quantification [12.734278426543332]
本稿では,データの疫学的不確実性を容易に定量化するための新しい手法を提案する。
本手法は,1つのクラス対他のクラス(OVA)を分類するために訓練されたDNNのアンサンブルの予測と,オール対オール(AVA)分類を実行するために訓練された標準DNNの予測とを混合して構成する。
論文 参考訳(メタデータ) (2020-06-01T14:06:12Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。