論文の概要: Estimation of Driver's Gaze Region from Head Position and Orientation
using Probabilistic Confidence Regions
- arxiv url: http://arxiv.org/abs/2012.12754v1
- Date: Wed, 23 Dec 2020 15:48:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 18:07:43.660430
- Title: Estimation of Driver's Gaze Region from Head Position and Orientation
using Probabilistic Confidence Regions
- Title(参考訳): 確率的信頼領域を用いた頭部位置と方位からのドライバの視線領域の推定
- Authors: Sumit Jha, Carlos Busso
- Abstract要約: スマートな車両は人間の行動を理解し、危険な状況を避けるために行動を予測する必要がある。
運転タスクに関連する最も重要な側面の1つは、ドライバーの視覚的注意です。
本稿では,ドライバの視覚的注意を表現したサルエント領域を作成するための確率モデルに基づく定式化を提案する。
- 参考スコア(独自算出の注目度): 43.9008720663172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A smart vehicle should be able to understand human behavior and predict their
actions to avoid hazardous situations. Specific traits in human behavior can be
automatically predicted, which can help the vehicle make decisions, increasing
safety. One of the most important aspects pertaining to the driving task is the
driver's visual attention. Predicting the driver's visual attention can help a
vehicle understand the awareness state of the driver, providing important
contextual information. While estimating the exact gaze direction is difficult
in the car environment, a coarse estimation of the visual attention can be
obtained by tracking the position and orientation of the head. Since the
relation between head pose and gaze direction is not one-to-one, this paper
proposes a formulation based on probabilistic models to create salient regions
describing the visual attention of the driver. The area of the predicted region
is small when the model has high confidence on the prediction, which is
directly learned from the data. We use Gaussian process regression (GPR) to
implement the framework, comparing the performance with different regression
formulations such as linear regression and neural network based methods. We
evaluate these frameworks by studying the tradeoff between spatial resolution
and accuracy of the probability map using naturalistic recordings collected
with the UTDrive platform. We observe that the GPR method produces the best
result creating accurate predictions with localized salient regions. For
example, the 95% confidence region is defined by an area that covers 3.77%
region of a sphere surrounding the driver.
- Abstract(参考訳): スマートな車両は人間の行動を理解し、危険な状況を避けるために行動を予測する必要がある。
人間の行動の特定の特性は自動的に予測され、それによって車両の安全性が向上する。
運転タスクに関連する最も重要な側面の1つは、運転者の視覚的注意である。
ドライバーの視覚的注意を予測することは、車両がドライバーの認識状態を理解し、重要なコンテキスト情報を提供するのに役立つ。
車内環境において正確な視線方向を推定することは困難であるが、頭部の位置や向きを追跡することで視覚的注意の粗い推定が得られる。
頭部の姿勢と視線方向の関係は一対一ではないため,ドライバの視覚的注意を表現した突出領域を作成するための確率モデルに基づく定式化を提案する。
予測された領域の面積は、モデルが予測に自信を持ち、データから直接学習した場合に小さい。
我々は,gaussian process regression (gpr) を用いて,線形回帰法やニューラルネットワークに基づく手法などの異なる回帰定式法との比較を行った。
UTDriveプラットフォームで収集した自然な記録を用いて,空間分解能と確率マップの精度のトレードオフについて検討した。
GPR法は局所的な正解域で正確な予測を行うのに最適である。
例えば95%の信頼領域は、ドライバーを取り巻く球体の3.77%の領域をカバーする領域で定義される。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Situation Awareness for Driver-Centric Driving Style Adaptation [3.568617847600189]
本稿では,車両データに基づいて事前学習した視覚特徴エンコーダに基づく状況認識型運転スタイルモデルを提案する。
実験の結果,提案手法は静的な運転スタイルを著しく上回り,高い状況クラスタを形成していることがわかった。
論文 参考訳(メタデータ) (2024-03-28T17:19:16Z) - Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
本研究では,混合密度ネットワーク(MDN)を組み合わせた軌道予測フレームワークを提案する。
提案するフレームワークは、広範囲の車両軌道データセットに基づいてテストされる。
論文 参考訳(メタデータ) (2023-12-19T12:56:56Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - Is my Driver Observation Model Overconfident? Input-guided Calibration
Networks for Reliable and Interpretable Confidence Estimates [23.449073032842076]
運転観察モデルは完璧な条件下で展開されることは滅多にない。
生のニューラルネットワークベースのアプローチは、予測品質を大幅に過大評価する傾向がある。
本稿では,CARing(Callibrated Action Recognition with Input Guidance)という,ビデオ表現による信頼度向上学習のためのニューラルネットワークを活用した新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-10T12:43:58Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z) - Towards Incorporating Contextual Knowledge into the Prediction of
Driving Behavior [5.345872343035626]
外部条件による予測の影響について検討する。
より正確には、横方向の動作予測に対する最先端のアプローチが、ある選択された外部条件、すなわち交通密度の影響について検討する。
本研究は,自動走行車への情報統合に向けた第一歩となる。
論文 参考訳(メタデータ) (2020-06-15T15:21:02Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。