論文の概要: Learning from Crowds by Modeling Common Confusions
- arxiv url: http://arxiv.org/abs/2012.13052v1
- Date: Thu, 24 Dec 2020 01:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 08:22:17.767692
- Title: Learning from Crowds by Modeling Common Confusions
- Title(参考訳): 混乱のモデル化による群衆からの学習
- Authors: Zhendong Chu, Jing Ma, Hongning Wang
- Abstract要約: クラウドソーシングは、大量のラベル付きデータを低コストで取得する実用的な方法を提供する。
しかしアノテータのアノテーションの品質は様々である。
アノテーションノイズを共通のノイズと個々のノイズに分解する新しい視点を提供する。
- 参考スコア(独自算出の注目度): 33.92690297826468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crowdsourcing provides a practical way to obtain large amounts of labeled
data at a low cost. However, the annotation quality of annotators varies
considerably, which imposes new challenges in learning a high-quality model
from the crowdsourced annotations. In this work, we provide a new perspective
to decompose annotation noise into common noise and individual noise and
differentiate the source of confusion based on instance difficulty and
annotator expertise on a per-instance-annotator basis. We realize this new
crowdsourcing model by an end-to-end learning solution with two types of noise
adaptation layers: one is shared across annotators to capture their commonly
shared confusions, and the other one is pertaining to each annotator to realize
individual confusion. To recognize the source of noise in each annotation, we
use an auxiliary network to choose the two noise adaptation layers with respect
to both instances and annotators. Extensive experiments on both synthesized and
real-world benchmarks demonstrate the effectiveness of our proposed common
noise adaptation solution.
- Abstract(参考訳): クラウドソーシングは、大量のラベル付きデータを低コストで取得する実用的な方法を提供する。
しかしアノテータのアノテーションの品質は大きく異なり、クラウドソースアノテーションから高品質なモデルを学ぶ上で新たな課題がもたらされる。
本稿では,アノテーションノイズを共通の雑音と個々の雑音に分解し,インスタンスの難易度とアノテーションの専門知識に基づいて混乱の原因を区別する新しい視点を提案する。
この新たなクラウドソーシングモデルは,2種類のノイズ適応層を持つエンドツーエンド学習ソリューションによって実現される。1つは,一般的な混同をキャプチャするためにアノテータ間で共有され,もう1つは個々の混同を実現するためにアノテータに関連するものである。
各アノテーションのノイズ発生源を認識するために,補助ネットワークを用いて2つの雑音適応層をインスタンスと注釈子の両方に対して選択する。
合成および実世界のベンチマークによる大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- Improving a Named Entity Recognizer Trained on Noisy Data with a Few
Clean Instances [55.37242480995541]
クリーンなインスタンスの小さなセットから,ノイズの多いNERデータを誘導することで,ノイズを発生させる手法を提案する。
メインのNERモデルとともに、判別器モデルをトレーニングし、その出力を使用してサンプルの重み付けを校正します。
クラウドソーシングと遠隔監視データセットの結果から,提案手法は少ないガイダンスセットで継続的に性能を向上させることができることが示された。
論文 参考訳(メタデータ) (2023-10-25T17:23:37Z) - Co-Learning Meets Stitch-Up for Noisy Multi-label Visual Recognition [70.00984078351927]
本稿では,多ラベル分類と長期学習の特徴に基づく雑音の低減に焦点をあてる。
よりクリーンなサンプルを合成し,マルチラベルノイズを直接低減するStitch-Up拡張を提案する。
ヘテロジニアス・コラーニング・フレームワークは、長い尾の分布とバランスの取れた分布の不整合を活用するためにさらに設計されている。
論文 参考訳(メタデータ) (2023-07-03T09:20:28Z) - Transferring Annotator- and Instance-dependent Transition Matrix for Learning from Crowds [88.06545572893455]
現実のクラウドソーシングシナリオでは、ノイズ遷移行列はアノテータとインスタンスに依存します。
まず、すべてのアノテータによるノイズパターンの混合をモデル化し、その後、個々のアノテータにこのモデリングを転送する。
実験により、合成および実世界のクラウドソーシングデータに対する提案手法の優位性が確認された。
論文 参考訳(メタデータ) (2023-06-05T13:43:29Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
ノイズラベルを用いた学習(LNL)は,ノイズラベルに対するモデルオーバーフィットの効果を軽減し,モデル性能と一般化を改善するための戦略を設計することを目的としている。
近年の進歩は、個々のサンプルのラベル分布を予測し、ノイズ検証とノイズラベル補正を行い、容易に確認バイアスを生じさせる。
提案手法では, 候補サンプルの予測信頼性を, 特徴空間近傍と対比することにより再推定する。
論文 参考訳(メタデータ) (2022-08-05T14:47:22Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - Noise-Tolerant Learning for Audio-Visual Action Recognition [31.641972732424463]
ビデオデータセットは通常、粗い注釈付きまたはインターネットから収集される。
本稿では,雑音ラベルと雑音対応の両方に対して,反干渉モデルパラメータを求めるための耐雑音性学習フレームワークを提案する。
本手法は,動作認識モデルのロバスト性を大幅に向上し,ベースラインをクリアマージンで越える。
論文 参考訳(メタデータ) (2022-05-16T12:14:03Z) - Disjoint Contrastive Regression Learning for Multi-Sourced Annotations [10.159313152511919]
大規模データセットはディープラーニングモデルの開発に重要である。
複数のアノテータを使用して、データの異なるサブセットをラベル付けすることができる。
異なるアノテータ間の矛盾とバイアスはモデルトレーニングに有害である。
論文 参考訳(メタデータ) (2021-12-31T12:39:04Z) - CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific
Perturbations for Tabular Data [8.276156981100364]
コティーチング手法は、ノイズの多いラベルによるコンピュータビジョン問題に対する有望な改善を示している。
我々のモデルであるcrowdteacherは、入力空間モデルのロバスト性がノイズラベルの分類器の摂動を改善することができるという考えを採用している。
合成データと実データの両方でCrowdTeacherを用いて予測能力の向上を示す。
論文 参考訳(メタデータ) (2021-03-31T15:09:38Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - Towards Robustness to Label Noise in Text Classification via Noise
Modeling [7.863638253070439]
NLPの大規模なデータセットは、誤った自動および人間のアノテーション手順のために、ノイズの多いラベルに悩まされる。
本稿では,ラベルノイズを用いたテキスト分類の問題について検討し,分類器上での補助雑音モデルを用いてこのノイズを捉えることを目的とする。
論文 参考訳(メタデータ) (2021-01-27T05:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。