Super interference fringes of two-photon photoluminescence in individual
Au nanoparticles: the critical role of the intermediate state
- URL: http://arxiv.org/abs/2012.13080v1
- Date: Thu, 24 Dec 2020 03:13:12 GMT
- Title: Super interference fringes of two-photon photoluminescence in individual
Au nanoparticles: the critical role of the intermediate state
- Authors: Yao Li, Yonggang Yang, Chengbing Qin, Yunrui Song, Shuangping Han,
Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Liantuan Xiao, and Suotang Jia
- Abstract summary: Two-photon photoluminescence measurements on individual Au nanobipyramids (AuNP)
Power-dependent measurements uncovered the transform of the nonlinearity from 1 to 2 when the interpulse delay varied from tens of femtoseconds to tens of picoseconds.
Results provide insight into the role of intermediate states in the ultrafast dynamics of noble metal nanoparticles.
- Score: 3.1572380440242407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interaction between light and metal nanoparticles enables investigations
of microscopic phenomena on nanometer length and ultrashort time scales,
benefiting from strong confinement and enhancement of the optical field.
However, the ultrafast dynamics of these nanoparticles are primarily
investigated by multiphoton photoluminescence on picoseconds or photoemission
on femtoseconds independently. Here, we presented two-photon photoluminescence
(TPPL) measurements on individual Au nanobipyramids (AuNP) to reveal their
ultrafast dynamics by two-pulse excitation on a global time scale ranging from
sub-femtosecond to tens of picoseconds. Two-orders-of-magnitude
photoluminescence enhancement, namely super interference fringes, has been
demonstrated on tens of femtoseconds. Power-dependent measurements uncovered
the transform of the nonlinearity from 1 to 2 when the interpulse delay varied
from tens of femtoseconds to tens of picoseconds. We proved that the real
intermediate state plays a critical role in the observed phenomena, supported
by numerical simulations with a three eigenstates model and further experiments
on Au nanospheres with different diameters. The crucial parameters, including
the dephasing time, the radiative rate, and the coupling between different
states, have been estimated using numerical simulations. Our results provide
insight into the role of intermediate states in the ultrafast dynamics of noble
metal nanoparticles. The giant photoluminescence in super interference fringes
enables potential practical applications in imaging, sensing, and
nanophotonics.
Related papers
- Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Solution-phase single-particle spectroscopy for probing multi-polaronic
dynamics in quantum emitters at femtosecond resolution [6.722815153728718]
We develop a solution-phase single-particle pump-probe spectroscopy with photon correlation detection that captures sample-averaged dynamics in single molecules and/or defect states with unprecedented clarity at femtosecond resolution.
Our work provides a framework for ultrafast spectroscopy in single emitters, molecules, or defects prone to photoluminescence intermittency and heterogeneity, opening new avenues of extreme-scale characterization and synthetic improvements for quantum information applications.
arXiv Detail & Related papers (2023-04-03T06:14:14Z) - Investigating the fast spectral diffusion of a quantum emitter in hBN
using resonant excitation and photon correlations [0.9605517200038842]
We show that a combination of resonant laser excitation and second-order photon correlations allows to access fast dynamics.
We experimentally implement this method to investigate the fast spectral diffusion of a color center generated by an electron beam in the two-dimensional material boron nitride.
arXiv Detail & Related papers (2023-03-09T15:02:25Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Observation of oscillatory Raman gain associated with two-photon Rabi
oscillations of nanofiber-coupled atoms [0.0]
Quantum emitters with a $Lambda$-type level structure enable numerous protocols and applications in quantum science and technology.
Here, we drive two-photon Rabi oscillations between the two ground states of cesium atoms.
We study the dependence of the two-photon Rabi frequency on the system parameters and observe Autler-Townes splitting in the probe transmission spectrum.
arXiv Detail & Related papers (2022-07-01T13:59:26Z) - Direct observation of photon bound states using a single artificial atom [0.45507178426690204]
We report the direct observation of a photon-number-dependent time delay in the scattering off a single semiconductor quantum dot coupled to an optical cavity.
The reduced time delay of the two-photon bound state is a fingerprint of the celebrated example of stimulated emission, where the arrival of two photons within the lifetime of an emitter causes one photon to stimulate the emission of the other from the atom.
arXiv Detail & Related papers (2022-05-06T15:41:59Z) - Single Photon Scattering Can Account for the Discrepancies Between
Entangled Two-Photon Measurement Techniques [0.0]
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption.
Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section.
A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state.
arXiv Detail & Related papers (2022-02-23T20:14:11Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.