Observation of oscillatory Raman gain associated with two-photon Rabi
oscillations of nanofiber-coupled atoms
- URL: http://arxiv.org/abs/2207.00437v1
- Date: Fri, 1 Jul 2022 13:59:26 GMT
- Title: Observation of oscillatory Raman gain associated with two-photon Rabi
oscillations of nanofiber-coupled atoms
- Authors: Christian Liedl, Sebastian Pucher, Philipp Schneeweiss, Leonid P.
Yatsenko, and Arno Rauschenbeutel
- Abstract summary: Quantum emitters with a $Lambda$-type level structure enable numerous protocols and applications in quantum science and technology.
Here, we drive two-photon Rabi oscillations between the two ground states of cesium atoms.
We study the dependence of the two-photon Rabi frequency on the system parameters and observe Autler-Townes splitting in the probe transmission spectrum.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum emitters with a $\Lambda$-type level structure enable numerous
protocols and applications in quantum science and technology. Understanding and
controlling their dynamics is, therefore, one of the central research topics in
quantum optics. Here, we drive two-photon Rabi oscillations between the two
ground states of cesium atoms and observe the associated oscillatory Raman gain
and absorption that stems from the atom-mediated coherent photon exchange
between the two drive fields. The atoms are efficiently and homogeneously
coupled with the probe field by means of a nanofiber-based optical interface.
We study the dependence of the two-photon Rabi frequency on the system
parameters and observe Autler-Townes splitting in the probe transmission
spectrum. Beyond shedding light on the fundamental processes underlying
two-photon Rabi oscillations, our method could also be used to investigate
(quantum) correlations between the two drive fields as well as the dynamical
establishment of electromagnetically induced transparency.
Related papers
- Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Extensible quantum simulation architecture based on atom-photon bound
states in an array of high-impedance resonators [0.0]
photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps.
Here we report on the concept and implementation of a novel microwave architecture consisting of an array of compact, high-impedance superconducting resonators.
We show coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates.
arXiv Detail & Related papers (2021-07-14T17:10:27Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.