Semi-Supervised Node Classification on Graphs: Markov Random Fields vs.
Graph Neural Networks
- URL: http://arxiv.org/abs/2012.13085v2
- Date: Fri, 25 Dec 2020 03:44:07 GMT
- Title: Semi-Supervised Node Classification on Graphs: Markov Random Fields vs.
Graph Neural Networks
- Authors: Binghui Wang, Jinyuan Jia, Neil Zhenqiang Gong
- Abstract summary: Semi-supervised node classification on graph-structured data has many applications such as fraud detection, fake account and review detection, user's private attribute inference in social networks, and community detection.
Various methods such as pairwise Markov Random Fields (pMRF) and graph neural networks were developed for semi-supervised node classification.
pMRF is more efficient than graph neural networks.
Existing pMRF-based methods are less accurate than graph neural networks, due to a key limitation that they assume a constant edge potential for all edges.
- Score: 38.760186021633146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised node classification on graph-structured data has many
applications such as fraud detection, fake account and review detection, user's
private attribute inference in social networks, and community detection.
Various methods such as pairwise Markov Random Fields (pMRF) and graph neural
networks were developed for semi-supervised node classification. pMRF is more
efficient than graph neural networks. However, existing pMRF-based methods are
less accurate than graph neural networks, due to a key limitation that they
assume a heuristics-based constant edge potential for all edges. In this work,
we aim to address the key limitation of existing pMRF-based methods. In
particular, we propose to learn edge potentials for pMRF. Our evaluation
results on various types of graph datasets show that our optimized pMRF-based
method consistently outperforms existing graph neural networks in terms of both
accuracy and efficiency. Our results highlight that previous work may have
underestimated the power of pMRF for semi-supervised node classification.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Neural-prior stochastic block model [0.0]
We propose to model the communities as being determined by the node attributes rather than the opposite.
We propose an algorithm, stemming from statistical physics, based on a combination of belief propagation and approximate message passing.
The proposed model and algorithm can be used as a benchmark for both theory and algorithms.
arXiv Detail & Related papers (2023-03-17T14:14:54Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
Massive Multiple-Input Multiple-Out (MIMO) detection is an important problem in modern wireless communication systems.
While traditional Belief Propagation (BP) detectors perform poorly on loopy graphs, the recent Graph Neural Networks (GNNs)-based method can overcome the drawbacks of BP and achieve superior performance.
arXiv Detail & Related papers (2022-05-22T08:01:47Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
This paper studies node classification in the inductive setting, aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs.
We present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds.
arXiv Detail & Related papers (2022-04-15T15:50:27Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.