Bayesian prognostic covariate adjustment
- URL: http://arxiv.org/abs/2012.13112v1
- Date: Thu, 24 Dec 2020 05:19:03 GMT
- Title: Bayesian prognostic covariate adjustment
- Authors: David Walsh, Alejandro Schuler, Diana Hall, Jon Walsh, Charles Fisher
- Abstract summary: Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
- Score: 59.75318183140857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Historical data about disease outcomes can be integrated into the analysis of
clinical trials in many ways. We build on existing literature that uses
prognostic scores from a predictive model to increase the efficiency of
treatment effect estimates via covariate adjustment. Here we go further,
utilizing a Bayesian framework that combines prognostic covariate adjustment
with an empirical prior distribution learned from the predictive performances
of the prognostic model on past trials. The Bayesian approach interpolates
between prognostic covariate adjustment with strict type I error control when
the prior is diffuse, and a single-arm trial when the prior is sharply peaked.
This method is shown theoretically to offer a substantial increase in
statistical power, while limiting the type I error rate under reasonable
conditions. We demonstrate the utility of our method in simulations and with an
analysis of a past Alzheimer's disease clinical trial.
Related papers
- Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by diverse progression rates among individuals.
We propose a conditional score-based diffusion model to generate CTh trajectories with the given baseline information.
Our model has a near-zero bias with narrow confidential 95% interval compared to the ground-truth CTh in 6-36 months.
arXiv Detail & Related papers (2024-03-11T17:26:18Z) - Prognostic Covariate Adjustment for Logistic Regression in Randomized
Controlled Trials [1.5020330976600735]
We show that prognostic score adjustment can increase the power of the Wald test for the conditional odds ratio under a fixed sample size.
We utilize g-computation to expand the scope of prognostic score adjustment to inferences on the marginal risk difference, relative risk, and odds ratio estimands.
arXiv Detail & Related papers (2024-02-29T06:53:16Z) - Uncertainty Quantification on Clinical Trial Outcome Prediction [37.238845949535616]
We propose incorporating uncertainty quantification into clinical trial outcome predictions.
Our main goal is to enhance the model's ability to discern nuanced differences.
We have adopted a selective classification approach to fulfill our objective.
arXiv Detail & Related papers (2024-01-07T13:48:05Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Simultaneous inference for generalized linear models with unmeasured confounders [0.0]
We propose a unified statistical estimation and inference framework that harnesses structures and integrates linear projections into three key stages.
We show effective Type-I error control of $z$-tests as sample and response sizes approach infinity.
arXiv Detail & Related papers (2023-09-13T18:53:11Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.