Evidential time-to-event prediction with calibrated uncertainty quantification
- URL: http://arxiv.org/abs/2411.07853v2
- Date: Fri, 13 Dec 2024 08:36:29 GMT
- Title: Evidential time-to-event prediction with calibrated uncertainty quantification
- Authors: Ling Huang, Yucheng Xing, Swapnil Mishra, Thierry Denoeux, Mengling Feng,
- Abstract summary: Time-to-event analysis provides insights into clinical prognosis and treatment recommendations.<n>We propose an evidential regression model specifically designed for time-to-event prediction.<n>We show that our model delivers both accurate and reliable performance, outperforming state-of-the-art methods.
- Score: 12.446406577462069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-to-event analysis provides insights into clinical prognosis and treatment recommendations. However, this task is more challenging than standard regression problems due to the presence of censored observations. Additionally, the lack of confidence assessment, model robustness, and prediction calibration raises concerns about the reliability of predictions. To address these challenges, we propose an evidential regression model specifically designed for time-to-event prediction. The proposed model quantifies both epistemic and aleatory uncertainties using Gaussian Random Fuzzy Numbers and belief functions, providing clinicians with uncertainty-aware survival time predictions. The model is trained by minimizing a generalized negative log-likelihood function accounting for data censoring. Experimental evaluations using simulated datasets with different data distributions and censoring conditions, as well as real-world datasets across diverse clinical applications, demonstrate that our model delivers both accurate and reliable performance, outperforming state-of-the-art methods. These results highlight the potential of our approach for enhancing clinical decision-making in survival analysis.
Related papers
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - An evidential time-to-event prediction model based on Gaussian random fuzzy numbers [12.753099158148887]
We introduce an evidential model for time-to-event prediction with censored data.
Uncertainty on event time is quantified by Gaussian random fuzzy numbers.
arXiv Detail & Related papers (2024-06-19T12:14:45Z) - Predictability Analysis of Regression Problems via Conditional Entropy Estimations [1.8913544072080544]
Conditional entropy estimators are developed to assess predictability in regression problems.
Experiments on synthesized and real-world datasets demonstrate the robustness and utility of these estimators.
arXiv Detail & Related papers (2024-06-06T07:59:19Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
We propose HypUC, a framework for imbalanced probabilistic regression in medical time series.
HypUC is evaluated on a large, diverse, real-world dataset of ECGs collected from millions of patients.
arXiv Detail & Related papers (2023-11-23T06:17:31Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
We propose Counterfactual ODE, a novel method to predict the impact of treatments continuously over time.
We demonstrate over several longitudinal data sets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.
arXiv Detail & Related papers (2022-02-24T09:50:02Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Gaussian Process Nowcasting: Application to COVID-19 Mortality Reporting [2.8712862578745018]
Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing.
We present a flexible approach using a latent Gaussian process that is capable of describing the changing auto-correlation structure present in the reporting time-delay surface.
This approach also yields robust estimates of uncertainty for the estimated nowcasted numbers of deaths.
arXiv Detail & Related papers (2021-02-22T18:32:44Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.