Unveiling Real-Life Effects of Online Photo Sharing
- URL: http://arxiv.org/abs/2012.13180v1
- Date: Thu, 24 Dec 2020 09:52:27 GMT
- Title: Unveiling Real-Life Effects of Online Photo Sharing
- Authors: Van-Khoa Nguyen, Adrian Popescu, Jerome Deshayes-Chossart
- Abstract summary: We propose a new approach which unveils potential effects of data sharing in impactful real-life situations.
The approach relies on three components: (1) a set of concepts with associated situation impact ratings obtained by crowdsourcing, (2) a corresponding set of object detectors used to analyze users' photos and (3) a ground truth dataset made of 500 visual user profiles.
Results indicate that LERVUP is effective since a strong correlation of the two rankings is obtained.
- Score: 7.358732518242146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social networks give free access to their services in exchange for the right
to exploit their users' data. Data sharing is done in an initial context which
is chosen by the users. However, data are used by social networks and third
parties in different contexts which are often not transparent. We propose a new
approach which unveils potential effects of data sharing in impactful real-life
situations. Focus is put on visual content because of its strong influence in
shaping online user profiles. The approach relies on three components: (1) a
set of concepts with associated situation impact ratings obtained by
crowdsourcing, (2) a corresponding set of object detectors used to analyze
users' photos and (3) a ground truth dataset made of 500 visual user profiles
which are manually rated for each situation. These components are combined in
LERVUP, a method which learns to rate visual user profiles in each situation.
LERVUP exploits a new image descriptor which aggregates concept ratings and
object detections at user level. It also uses an attention mechanism to boost
the detections of highly-rated concepts to prevent them from being overwhelmed
by low-rated ones. Performance is evaluated per situation by measuring the
correlation between the automatic ranking of profile ratings and a manual
ground truth. Results indicate that LERVUP is effective since a strong
correlation of the two rankings is obtained. This finding indicates that
providing meaningful automatic situation-related feedback about the effects of
data sharing is feasible.
Related papers
- Exposing and Explaining Fake News On-the-Fly [4.278181795494584]
This work contributes with an explainable and online classification method to recognize fake news in real-time.
The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica.
The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80 % accuracy and macro F-measure.
arXiv Detail & Related papers (2024-05-03T14:49:04Z) - SoMeR: Multi-View User Representation Learning for Social Media [1.7949335303516192]
We propose SoMeR, a Social Media user representation learning framework that incorporates temporal activities, text content, profile information, and network interactions to learn comprehensive user portraits.
SoMeR encodes user post streams as sequences of timestamped textual features, uses transformers to embed this along with profile data, and jointly trains with link prediction and contrastive learning objectives.
We demonstrate SoMeR's versatility through two applications: 1) Identifying inauthentic accounts involved in coordinated influence operations by detecting users posting similar content simultaneously, and 2) Measuring increased polarization in online discussions after major events by quantifying how users with different beliefs moved farther apart
arXiv Detail & Related papers (2024-05-02T22:26:55Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
Recent research proposes to debias by modeling a recommender system from a causal perspective.
The critical challenge in this setting is accounting for the hidden confounders.
We propose to leverage network information (i.e., user-social and user-item networks) to better approximate hidden confounders.
arXiv Detail & Related papers (2022-04-14T20:55:11Z) - Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection [20.394457328537975]
correlations between user-generated and user-shared content can be leveraged for detecting disinformation in online news articles.
We develop a multimodal learning algorithm for disinformation detection.
arXiv Detail & Related papers (2021-08-31T14:50:16Z) - Dual Side Deep Context-aware Modulation for Social Recommendation [50.59008227281762]
We propose a novel graph neural network to model the social relation and collaborative relation.
On top of high-order relations, a dual side deep context-aware modulation is introduced to capture the friends' information and item attraction.
arXiv Detail & Related papers (2021-03-16T11:08:30Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF) is a new model for learning informative representations of users and items from interaction data.
By modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations.
DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE.
arXiv Detail & Related papers (2020-07-03T15:37:25Z) - A Robust Reputation-based Group Ranking System and its Resistance to
Bribery [8.300507994596416]
We propose a new reputation-based ranking system, utilizing multipartite ratingworks.
We study its resistance to bribery and how to design optimal bribing strategies.
arXiv Detail & Related papers (2020-04-13T22:28:29Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences.
We propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet)
In this paper, we propose DiffNet++, an improved algorithm of Diffnet that models the neural influence diffusion and interest diffusion in a unified framework.
arXiv Detail & Related papers (2020-01-15T08:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.