Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis
- URL: http://arxiv.org/abs/2012.13522v1
- Date: Fri, 25 Dec 2020 06:09:36 GMT
- Title: Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis
- Authors: Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu,
Ying Nian Wu
- Abstract summary: This paper proposes a deep 3D energy-based model to represent volumetric shapes.
The benefits of the proposed model are six-fold.
Experiments demonstrate that the proposed model can generate high-quality 3D shape patterns.
- Score: 143.22192229456306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D data that contains rich geometry information of objects and scenes is
valuable for understanding 3D physical world. With the recent emergence of
large-scale 3D datasets, it becomes increasingly crucial to have a powerful 3D
generative model for 3D shape synthesis and analysis. This paper proposes a
deep 3D energy-based model to represent volumetric shapes. The maximum
likelihood training of the model follows an "analysis by synthesis" scheme. The
benefits of the proposed model are six-fold: first, unlike GANs and VAEs, the
model training does not rely on any auxiliary models; second, the model can
synthesize realistic 3D shapes by Markov chain Monte Carlo (MCMC); third, the
conditional model can be applied to 3D object recovery and super resolution;
fourth, the model can serve as a building block in a multi-grid modeling and
sampling framework for high resolution 3D shape synthesis; fifth, the model can
be used to train a 3D generator via MCMC teaching; sixth, the unsupervisedly
trained model provides a powerful feature extractor for 3D data, which is
useful for 3D object classification. Experiments demonstrate that the proposed
model can generate high-quality 3D shape patterns and can be useful for a wide
variety of 3D shape analysis.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - SuperGaussian: Repurposing Video Models for 3D Super Resolution [67.19266415499139]
We present a simple, modular, and generic method that upsamples coarse 3D models by adding geometric and appearance details.
We demonstrate that it is possible to directly repurpose existing (pretrained) video models for 3D super-resolution.
arXiv Detail & Related papers (2024-06-02T03:44:50Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
We propose a 3D geometry-aware deformable Gaussian Splatting method for dynamic view synthesis.
Our solution achieves 3D geometry-aware deformation modeling, which enables improved dynamic view synthesis and 3D dynamic reconstruction.
arXiv Detail & Related papers (2024-04-09T12:47:30Z) - VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models [20.084928490309313]
This paper presents a novel method for building scalable 3D generative models utilizing pre-trained video diffusion models.
By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model.
The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds.
arXiv Detail & Related papers (2024-03-18T17:59:12Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - Learning to Generate 3D Shapes from a Single Example [28.707149807472685]
We present a multi-scale GAN-based model designed to capture the input shape's geometric features across a range of spatial scales.
We train our generative model on a voxel pyramid of the reference shape, without the need of any external supervision or manual annotation.
The resulting shapes present variations across different scales, and at the same time retain the global structure of the reference shape.
arXiv Detail & Related papers (2022-08-05T01:05:32Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - A Convolutional Architecture for 3D Model Embedding [1.3858051019755282]
We propose a deep learning architecture to handle 3D models as an input.
We show that the embedding representation conveys semantic information that helps to deal with the similarity assessment of 3D objects.
arXiv Detail & Related papers (2021-03-05T15:46:47Z) - Building 3D Morphable Models from a Single Scan [3.472931603805115]
We propose a method for constructing generative models of 3D objects from a single 3D mesh.
Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes.
We show that our approach can be used to perform face recognition using only a single 3D scan.
arXiv Detail & Related papers (2020-11-24T23:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.