VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models
- URL: http://arxiv.org/abs/2403.12034v2
- Date: Thu, 18 Jul 2024 21:22:49 GMT
- Title: VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models
- Authors: Junlin Han, Filippos Kokkinos, Philip Torr,
- Abstract summary: This paper presents a novel method for building scalable 3D generative models utilizing pre-trained video diffusion models.
By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model.
The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds.
- Score: 20.084928490309313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel method for building scalable 3D generative models utilizing pre-trained video diffusion models. The primary obstacle in developing foundation 3D generative models is the limited availability of 3D data. Unlike images, texts, or videos, 3D data are not readily accessible and are difficult to acquire. This results in a significant disparity in scale compared to the vast quantities of other types of data. To address this issue, we propose using a video diffusion model, trained with extensive volumes of text, images, and videos, as a knowledge source for 3D data. By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model. The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds and achieves superior performance when compared to current SOTA feed-forward 3D generative models, with users preferring our results over 90% of the time.
Related papers
- 3D-VirtFusion: Synthetic 3D Data Augmentation through Generative Diffusion Models and Controllable Editing [52.68314936128752]
We propose a new paradigm to automatically generate 3D labeled training data by harnessing the power of pretrained large foundation models.
For each target semantic class, we first generate 2D images of a single object in various structure and appearance via diffusion models and chatGPT generated text prompts.
We transform these augmented images into 3D objects and construct virtual scenes by random composition.
arXiv Detail & Related papers (2024-08-25T09:31:22Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - SuperGaussian: Repurposing Video Models for 3D Super Resolution [67.19266415499139]
We present a simple, modular, and generic method that upsamples coarse 3D models by adding geometric and appearance details.
We demonstrate that it is possible to directly repurpose existing (pretrained) video models for 3D super-resolution.
arXiv Detail & Related papers (2024-06-02T03:44:50Z) - VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model [34.35449902855767]
Two fundamental questions are what data we use for training and how to ensure multi-view consistency.
We propose a dense consistent multi-view generation model that is fine-tuned from off-the-shelf video generative models.
Our approach can generate 24 dense views and converges much faster in training than state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T17:48:15Z) - V3D: Video Diffusion Models are Effective 3D Generators [19.33837029942662]
We introduce V3D, which leverages the world simulation capacity of pre-trained video diffusion models to facilitate 3D generation.
Benefiting from this, the state-of-the-art video diffusion model could be fine-tuned to generate 360degree orbit frames surrounding an object given a single image.
Our method can be extended to scene-level novel view synthesis, achieving precise control over the camera path with sparse input views.
arXiv Detail & Related papers (2024-03-11T14:03:36Z) - 3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors [85.11117452560882]
We present a two-stage text-to-3D generation system, namely 3DTopia, which generates high-quality general 3D assets within 5 minutes using hybrid diffusion priors.
The first stage samples from a 3D diffusion prior directly learned from 3D data. Specifically, it is powered by a text-conditioned tri-plane latent diffusion model, which quickly generates coarse 3D samples for fast prototyping.
The second stage utilizes 2D diffusion priors to further refine the texture of coarse 3D models from the first stage. The refinement consists of both latent and pixel space optimization for high-quality texture generation
arXiv Detail & Related papers (2024-03-04T17:26:28Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
This paper proposes a deep 3D energy-based model to represent volumetric shapes.
The benefits of the proposed model are six-fold.
Experiments demonstrate that the proposed model can generate high-quality 3D shape patterns.
arXiv Detail & Related papers (2020-12-25T06:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.