Continuous variable multimode quantum states via symmetric group
velocity matching
- URL: http://arxiv.org/abs/2012.13629v1
- Date: Fri, 25 Dec 2020 20:52:32 GMT
- Title: Continuous variable multimode quantum states via symmetric group
velocity matching
- Authors: V. Roman-Rodriguez, B. Brecht, S. Kaali, C. Silberhorn, N. Treps, E.
Diamanti, V. Parigi
- Abstract summary: We exploit symmetric group velocity matching (SGVM) to engineer the properties of the squeezed modes of the parametric down conversion (PDC)
This work paves the way towards the engineering of future large-scale quantum networks in the continuous variable regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Configurable and scalable continuous variable quantum networks for
measurement-based quantum information protocols or multipartite quantum
communication schemes can be obtained via parametric down conversion (PDC) in
non-linear waveguides. In this work, we exploit symmetric group velocity
matching (SGVM) to engineer the properties of the squeezed modes of the PDC. We
identify type II PDC in a single waveguide as the best suited process, since
multiple modes with non-negligible amount of squeezing can be obtained. We
explore, for the first time, the waveguide dimensions, usually only set to
ensure single-mode guiding, as an additional design parameter ensuring
indistinguishability of the signal and idler fields. We investigate here
potassium titanyl phosphate (KTP), which offers SGVM at telecommunications
wavelengths, but our approach can be applied to any non-linear material and
pump wavelength. This work paves the way towards the engineering of future
large-scale quantum networks in the continuous variable regime.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Quantum State Transfer via a Multimode Resonator [4.324470586239192]
Large-scale fault-tolerant superconducting quantum computation needs rapid quantum communication.
We propose a formalism for quantum state transfer using coupling strengths comparable to the channel's free spectral range.
arXiv Detail & Related papers (2024-06-30T12:44:44Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Enhancement of microwave squeezing via parametric down-conversion in a
superconducting quantum circuit [3.2090709550735097]
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs)
In our scheme, the two CWRs are nonlinearly coupled through a superconducting quantum interference device embedded in one of the CWRs.
arXiv Detail & Related papers (2021-04-20T12:43:34Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Scalable multimode entanglement based on efficient squeezing of
propagation eigenmodes [0.0]
We introduce a protocol for the generation of spatial multipartite entanglement based on phase-matching of a parametric propagation eigenmode in a monolithic photonic device.
We theoretically demonstrate in the spontaneous downconversion regime the generation of large multipartite entangled states useful for multimode quantum networks.
arXiv Detail & Related papers (2020-05-14T20:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.