Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays
- URL: http://arxiv.org/abs/2405.08176v3
- Date: Mon, 09 Dec 2024 14:24:40 GMT
- Title: Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays
- Authors: A. Raymond, A. Zecchetto, J. Palomo, M. Morassi, A. LemaƮtre, F. Raineri, M. I. Amanti, S. Ducci, F. Baboux,
- Abstract summary: We demonstrate a compact source of path-entangled photon pairs based on parametric down-conversion in semiconductor nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
- Score: 0.0
- License:
- Abstract: Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously-coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint. Here we exploit this concept to implement a compact and reconfigurable source of path-entangled photon pairs based on parametric down-conversion in semiconductor nonlinear waveguides arrays. We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations, exploiting a quantum interference effect between the biphoton state generated in each pumped waveguide. This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems as a promising alternative to discrete multi-component quantum circuits for leveraging the high-dimensional spatial degree of freedom of photons.
Related papers
- Generation of Tunable Three-Photon Entanglement in Cubic Nonlinear Coupled Waveguides [39.745906106570985]
We theoretically investigate the generation of three-photon states with spatial entanglement in cubic nonlinear coupled waveguides.
This work demonstrates an integrated source of three-photon spatial entanglement on a simple chip, offering additional reconfigurability for advanced multiphoton quantum applications.
arXiv Detail & Related papers (2024-11-12T02:25:45Z) - Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator [6.098636361994834]
We introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors.
We show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
arXiv Detail & Related papers (2024-02-29T16:22:13Z) - Biphoton engineering using modal spatial overlap on-chip [2.9880862883728105]
We show that by utilizing modal coupling in a system of coupled waveguides, we explore the modal field overlap as a new degree of freedom for biphoton engineering.
This strategy can be applied to waveguides of different materials and structures, offering new possibilities for photonic quantum state engineering.
arXiv Detail & Related papers (2022-10-29T06:04:30Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.