Inception-Based Network and Multi-Spectrogram Ensemble Applied For
Predicting Respiratory Anomalies and Lung Diseases
- URL: http://arxiv.org/abs/2012.13699v1
- Date: Sat, 26 Dec 2020 08:25:02 GMT
- Title: Inception-Based Network and Multi-Spectrogram Ensemble Applied For
Predicting Respiratory Anomalies and Lung Diseases
- Authors: Lam Pham, Huy Phan, Ross King, Alfred Mertins, Ian McLoughlin
- Abstract summary: This paper presents an inception-based deep neural network for detecting lung diseases using respiratory sound input.
Recordings of respiratory sound collected from patients are transformed into spectrograms where both spectral and temporal information are well presented.
These spectrograms are fed into the proposed network, referred to as back-end classification, for detecting whether patients suffer from lung-relevant diseases.
- Score: 16.318395700171624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an inception-based deep neural network for detecting lung
diseases using respiratory sound input. Recordings of respiratory sound
collected from patients are firstly transformed into spectrograms where both
spectral and temporal information are well presented, referred to as front-end
feature extraction. These spectrograms are then fed into the proposed network,
referred to as back-end classification, for detecting whether patients suffer
from lung-relevant diseases. Our experiments, conducted over the ICBHI
benchmark meta-dataset of respiratory sound, achieve competitive ICBHI scores
of 0.53/0.45 and 0.87/0.85 regarding respiratory anomaly and disease detection,
respectively.
Related papers
- Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort [55.41644538483948]
This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT.
Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries.
arXiv Detail & Related papers (2023-07-03T18:06:36Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - Sleep Apnea and Respiratory Anomaly Detection from a Wearable Band and
Oxygen Saturation [1.2291501047353484]
There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device.
The objective is to automatically detect abnormal respiration and estimate the Apnea-Hypopnea-Index (AHI) with a wearable respiratory device.
Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%)-feature.
arXiv Detail & Related papers (2021-02-24T02:04:57Z) - Deep Learning Framework Applied for Predicting Anomaly of Respiratory
Sounds [11.375037967010224]
This paper proposes a robust deep learning framework used for classifying anomaly of respiratory cycles.
In this work, we conducted experiments over 2017 Internal Conference on Biomedical Health Informatics (ICBHI) benchmark dataset.
arXiv Detail & Related papers (2020-12-26T03:09:36Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Multispectral Video Fusion for Non-contact Monitoring of Respiratory
Rate and Apnea [7.300192965401497]
Non-contact monitoring of respiration can be achieved with near- and far-infrared spectrum cameras.
We present a novel algorithm based on multispectral data fusion that aims at estimating respiratory rate (RR) during apnea.
Our findings may represent a step towards the use of cameras for vital sign monitoring in medical applications.
arXiv Detail & Related papers (2020-04-21T09:07:09Z) - CNN-MoE based framework for classification of respiratory anomalies and
lung disease detection [33.45087488971683]
This paper presents and explores a robust deep learning framework for auscultation analysis.
It aims to classify anomalies in respiratory cycles and detect disease, from respiratory sound recordings.
arXiv Detail & Related papers (2020-04-04T21:45:06Z) - Robust Deep Learning Framework For Predicting Respiratory Anomalies and
Diseases [26.786743524562322]
This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds.
A back-end deep learning model classifies the features into classes of respiratory disease or anomaly.
Experiments, conducted over the ICBHI benchmark dataset of respiratory sounds, evaluate the ability of the framework to classify sounds.
arXiv Detail & Related papers (2020-01-21T15:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.