Investigating the impact of kernel harmonization and deformable registration on inspiratory and expiratory chest CT images for people with COPD
- URL: http://arxiv.org/abs/2502.05119v1
- Date: Fri, 07 Feb 2025 17:41:49 GMT
- Title: Investigating the impact of kernel harmonization and deformable registration on inspiratory and expiratory chest CT images for people with COPD
- Authors: Aravind R. Krishnan, Yihao Liu, Kaiwen Xu, Michael E. Kim, Lucas W. Remedios, Gaurav Rudravaram, Adam M. Saunders, Bradley W. Richmond, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman, Lianrui Zuo,
- Abstract summary: We propose a two-stage pipeline to harmonize reconstruction kernels and perform deformable image registration.
We use a cycle generative adversarial network (GAN) to harmonize inspiratory scans reconstructed with a hard kernel (BONE) to match expiratory scans reconstructed with a soft kernel (STANDARD)
Results show harmonization significantly reduces emphysema measurement inconsistencies.
- Score: 5.293488807720599
- License:
- Abstract: Paired inspiratory-expiratory CT scans enable the quantification of gas trapping due to small airway disease and emphysema by analyzing lung tissue motion in COPD patients. Deformable image registration of these scans assesses regional lung volumetric changes. However, variations in reconstruction kernels between paired scans introduce errors in quantitative analysis. This work proposes a two-stage pipeline to harmonize reconstruction kernels and perform deformable image registration using data acquired from the COPDGene study. We use a cycle generative adversarial network (GAN) to harmonize inspiratory scans reconstructed with a hard kernel (BONE) to match expiratory scans reconstructed with a soft kernel (STANDARD). We then deformably register the expiratory scans to inspiratory scans. We validate harmonization by measuring emphysema using a publicly available segmentation algorithm before and after harmonization. Results show harmonization significantly reduces emphysema measurement inconsistencies, decreasing median emphysema scores from 10.479% to 3.039%, with a reference median score of 1.305% from the STANDARD kernel as the target. Registration accuracy is evaluated via Dice overlap between emphysema regions on inspiratory, expiratory, and deformed images. The Dice coefficient between inspiratory emphysema masks and deformably registered emphysema masks increases significantly across registration stages (p<0.001). Additionally, we demonstrate that deformable registration is robust to kernel variations.
Related papers
- Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Inter-vendor harmonization of Computed Tomography (CT) reconstruction
kernels using unpaired image translation [7.398825519944107]
The reconstruction kernel in computed tomography (CT) generation determines the texture of the image.
Harmonization (i.e., kernel conversion) minimizes differences in measurements due to inconsistent reconstruction kernels.
We use hard and soft reconstruction kernels from the Siemens and GE vendors from the National Lung Screening Trial dataset.
arXiv Detail & Related papers (2023-09-22T15:53:56Z) - Multi-scale, Data-driven and Anatomically Constrained Deep Learning
Image Registration for Adult and Fetal Echocardiography [4.923733944174007]
We propose a framework that combines three strategies for deep learning image registration in both fetal and adult echo.
Our tests show that good anatomical topology and image textures are strongly linked to shape-encoded and data-driven adversarial losses.
Our approach outperforms traditional non-DL gold standard registration approaches, including Optical Flow and Elastix.
arXiv Detail & Related papers (2023-09-02T05:33:31Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Single volume lung biomechanics from chest computed tomography using a
mode preserving generative adversarial network [10.406580531987418]
We propose a generative adversarial learning approach for estimating local tissue expansion directly from a single CT scan.
The proposed framework was trained and evaluated on 2500 subjects from the SPIROMICS cohort.
Our model achieved an overall PSNR of 18.95 decibels, SSIM of 0.840, and Spearman's correlation of 0.61 at a high spatial resolution of 1 mm3.
arXiv Detail & Related papers (2021-10-15T06:17:52Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - 2-D Respiration Navigation Framework for 3-D Continuous Cardiac Magnetic
Resonance Imaging [61.701281723900216]
We propose a sampling adaption to acquire 2-D respiration information during a continuous scan.
We develop a pipeline to extract the different respiration states from the acquired signals, which are used to reconstruct data from one respiration phase.
arXiv Detail & Related papers (2020-12-26T08:29:57Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - No Surprises: Training Robust Lung Nodule Detection for Low-Dose CT
Scans by Augmenting with Adversarial Attacks [18.369871933983706]
Using computer vision techniques to detect nodules can improve the sensitivity and the speed of interpreting chest CT for lung cancer screening.
Many studies have used CNNs to detect nodule candidates.
CNNs are also known to be limited to generalize on under-represented samples in the training set and prone to imperceptible noise perturbations.
arXiv Detail & Related papers (2020-03-08T18:32:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.