Layer Decomposition Learning Based on Gaussian Convolution Model and
Residual Deblurring for Inverse Halftoning
- URL: http://arxiv.org/abs/2012.13894v2
- Date: Sun, 7 Feb 2021 14:04:35 GMT
- Title: Layer Decomposition Learning Based on Gaussian Convolution Model and
Residual Deblurring for Inverse Halftoning
- Authors: Chang-Hwan Son
- Abstract summary: Layer decomposition to separate an input image into base and detail layers has been steadily used for image restoration.
In inverse halftoning, homogenous dot patterns hinder a small output range from the residual layers.
A new layer decomposition network based on the Gaussian convolution model (GCM) and structure-aware deblurring strategy is presented.
- Score: 7.462336024223669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Layer decomposition to separate an input image into base and detail layers
has been steadily used for image restoration. Existing residual networks based
on an additive model require residual layers with a small output range for fast
convergence and visual quality improvement. However, in inverse halftoning,
homogenous dot patterns hinder a small output range from the residual layers.
Therefore, a new layer decomposition network based on the Gaussian convolution
model (GCM) and structure-aware deblurring strategy is presented to achieve
residual learning for both the base and detail layers. For the base layer, a
new GCM-based residual subnetwork is presented. The GCM utilizes a statistical
distribution, in which the image difference between a blurred continuous-tone
image and a blurred halftoned image with a Gaussian filter can result in a
narrow output range. Subsequently, the GCM-based residual subnetwork uses a
Gaussian-filtered halftoned image as input and outputs the image difference as
residual, thereby generating the base layer, i.e., the Gaussian-blurred
continuous-tone image. For the detail layer, a new structure-aware residual
deblurring subnetwork (SARDS) is presented. To remove the Gaussian blurring of
the base layer, the SARDS uses the predicted base layer as input and outputs
the deblurred version. To more effectively restore image structures such as
lines and texts, a new image structure map predictor is incorporated into the
deblurring network to induce structure-adaptive learning. This paper provides a
method to realize the residual learning of both the base and detail layers
based on the GCM and SARDS. In addition, it is verified that the proposed
method surpasses state-of-the-art methods based on U-Net, direct deblurring
networks, and progressively residual networks.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
We propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures.
Our method yields significant performance gains, such as 1.2% on fine-tuning, 2.8% on linear probing, and 2.6% on semantic segmentation.
arXiv Detail & Related papers (2023-08-01T03:44:56Z) - Scalable Kernel-Based Minimum Mean Square Error Estimator for
Accelerated Image Error Concealment [2.3484130340004326]
We propose a novel scalable spatial error concealment algorithm.
It exploits the excellent reconstructing abilities of the kernel-based minimum mean square error K-MMSE estimator.
It produces high quality reconstructions, equivalent to K-MMSE, while requiring around one tenth of its computational time.
arXiv Detail & Related papers (2022-05-23T12:15:24Z) - Multi-layer Clustering-based Residual Sparsifying Transform for Low-dose
CT Image Reconstruction [11.011268090482575]
We propose a network-structured sparsifying transform learning approach for X-ray computed tomography (CT) reconstruction.
We apply the MCST model to low-dose CT reconstruction by deploying the learned MCST model into the regularizer in penalized weighted least squares (PWLS) reconstruction.
Our simulation results demonstrate that PWLS-MCST achieves better image reconstruction quality than the conventional FBP method and PWLS with edge-preserving (EP) regularizer.
arXiv Detail & Related papers (2022-03-22T09:38:41Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - A Hierarchical Coding Scheme for Glasses-free 3D Displays Based on
Scalable Hybrid Layered Representation of Real-World Light Fields [0.6091702876917279]
Scheme learns stacked multiplicative layers from subsets of light field views determined from different scanning orders.
The spatial correlation in layer patterns is exploited with varying low ranks in factorization derived from singular value decomposition on a Krylov subspace.
encoding with HEVC efficiently removes intra-view and inter-view correlation in low-rank approximated layers.
arXiv Detail & Related papers (2021-04-19T15:09:21Z) - Generating Attribution Maps with Disentangled Masked Backpropagation [22.065454879517326]
We introduce Disentangled Masked Backpropagation (DMBP) to decompose the model function into different linear mappings.
DMBP generates more visually interpretable attribution maps than previous approaches.
We quantitatively show that the maps produced by our method are more consistent with the true contribution of each pixel to the final network output.
arXiv Detail & Related papers (2021-01-17T20:32:14Z) - Multi-layer Residual Sparsifying Transform (MARS) Model for Low-dose CT
Image Reconstruction [12.37556184089774]
We develop a new image reconstruction approach based on a novel multi-layer model learned in an unsupervised manner.
The proposed framework extends the classical sparsifying transform model for images to a Multi-lAyer Residual Sparsifying transform (MARS) model.
We derive an efficient block coordinate descent algorithm to learn the transforms across layers, in an unsupervised manner from limited regular-dose images.
arXiv Detail & Related papers (2020-10-10T09:04:43Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
We learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising.
The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms.
arXiv Detail & Related papers (2020-04-26T04:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.