Scalable Kernel-Based Minimum Mean Square Error Estimator for
Accelerated Image Error Concealment
- URL: http://arxiv.org/abs/2205.11226v1
- Date: Mon, 23 May 2022 12:15:24 GMT
- Title: Scalable Kernel-Based Minimum Mean Square Error Estimator for
Accelerated Image Error Concealment
- Authors: J\'an Koloda, J\"urgen Seiler, Antonio M. Peinado, and Andr\'e Kaup
- Abstract summary: We propose a novel scalable spatial error concealment algorithm.
It exploits the excellent reconstructing abilities of the kernel-based minimum mean square error K-MMSE estimator.
It produces high quality reconstructions, equivalent to K-MMSE, while requiring around one tenth of its computational time.
- Score: 2.3484130340004326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Error concealment is of great importance for block-based video systems, such
as DVB or video streaming services. In this paper, we propose a novel scalable
spatial error concealment algorithm that aims at obtaining high quality
reconstructions with reduced computational burden. The proposed technique
exploits the excellent reconstructing abilities of the kernel-based minimum
mean square error K-MMSE estimator. We propose to decompose this approach into
a set of hierarchically stacked layers. The first layer performs the basic
reconstruction that the subsequent layers can eventually refine. In addition,
we design a layer management mechanism, based on profiles, that dynamically
adapts the use of higher layers to the visual complexity of the area being
reconstructed. The proposed technique outperforms other state-of-the-art
algorithms and produces high quality reconstructions, equivalent to K-MMSE,
while requiring around one tenth of its computational time.
Related papers
- DGTR: Distributed Gaussian Turbo-Reconstruction for Sparse-View Vast Scenes [81.56206845824572]
Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction.
Few-shot methods often struggle with poor reconstruction quality in vast environments.
This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes.
arXiv Detail & Related papers (2024-11-19T07:51:44Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
We propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures.
Our method yields significant performance gains, such as 1.2% on fine-tuning, 2.8% on linear probing, and 2.6% on semantic segmentation.
arXiv Detail & Related papers (2023-08-01T03:44:56Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution [55.50793823060282]
We propose a novel Content-Aware Dynamic Quantization (CADyQ) method for image super-resolution (SR) networks.
CADyQ allocates optimal bits to local regions and layers adaptively based on the local contents of an input image.
The pipeline has been tested on various SR networks and evaluated on several standard benchmarks.
arXiv Detail & Related papers (2022-07-21T07:50:50Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
We propose a hybrid network module, namely CCoT (Contextual Transformer) block, which can acquire the inductive bias ability of transformer simultaneously.
We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CT network.
arXiv Detail & Related papers (2022-01-15T06:30:03Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
We propose a compact, efficient, and end-to-end learning-based framework, namely AGD-Net.
We first formulate the problem explicitly based on the classic gradient descent algorithm.
AGD-Net can improve the reconstruction quality by more than 1.0 dB on average.
arXiv Detail & Related papers (2021-08-12T05:54:09Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Sub-Pixel Back-Projection Network For Lightweight Single Image
Super-Resolution [17.751425965791718]
We study reducing the number of parameters and computational cost of CNN-based SISR methods.
We introduce a novel network architecture for SISR, which strikes a good trade-off between reconstruction quality and low computational complexity.
arXiv Detail & Related papers (2020-08-03T18:15:16Z) - Neural Network-based Reconstruction in Compressed Sensing MRI Without
Fully-sampled Training Data [17.415937218905125]
CS-MRI has shown promise in reconstructing under-sampled MR images.
Deep learning models have been developed that model the iterative nature of classical techniques by unrolling iterations in a neural network.
In this paper, we explore a novel strategy to train an unrolled reconstruction network in an unsupervised fashion by adopting a loss function widely-used in classical optimization schemes.
arXiv Detail & Related papers (2020-07-29T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.