論文の概要: Human Expression Recognition using Facial Shape Based Fourier
Descriptors Fusion
- arxiv url: http://arxiv.org/abs/2012.14097v1
- Date: Mon, 28 Dec 2020 05:01:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 11:04:29.911771
- Title: Human Expression Recognition using Facial Shape Based Fourier
Descriptors Fusion
- Title(参考訳): 顔形状に基づくフーリエディスクリプタ融合を用いた人間の表情認識
- Authors: Ali Raza Shahid, Sheheryar Khan, Hong Yan
- Abstract要約: 本論文では,顔面筋の変化に基づく新しい表情認識法を提案する。
幾何学的特徴は、口、目、鼻などの顔領域を特定するために用いられる。
7つの人間の表現の分類にマルチクラスサポートベクターマシンが適用される。
- 参考スコア(独自算出の注目度): 15.063379178217717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dynamic facial expression recognition has many useful applications in social
networks, multimedia content analysis, security systems and others. This
challenging process must be done under recurrent problems of image illumination
and low resolution which changes at partial occlusions. This paper aims to
produce a new facial expression recognition method based on the changes in the
facial muscles. The geometric features are used to specify the facial regions
i.e., mouth, eyes, and nose. The generic Fourier shape descriptor in
conjunction with elliptic Fourier shape descriptor is used as an attribute to
represent different emotions under frequency spectrum features. Afterwards a
multi-class support vector machine is applied for classification of seven human
expression. The statistical analysis showed our approach obtained overall
competent recognition using 5-fold cross validation with high accuracy on
well-known facial expression dataset.
- Abstract(参考訳): 動的表情認識は、ソーシャルネットワーク、マルチメディアコンテンツ分析、セキュリティシステムなど、多くの有用な応用がある。
この困難なプロセスは、部分的オクルージョンで変化する画像照明と低分解能の繰り返しの問題の下で行う必要がある。
本稿では,顔の筋肉の変化に基づく新しい表情認識法を提案する。
幾何学的特徴は、口、目、鼻などの顔領域を特定するために用いられる。
楕円フーリエ形状記述子と組み合わせた汎用フーリエ形状記述子は、周波数スペクトルの特徴の下で異なる感情を表現する属性として用いられる。
その後、7つの人間の表現の分類にマルチクラスサポートベクターマシンが適用される。
統計的解析により, 顔表情データセット上での精度の高い5倍クロス検証により, 総合的コンピテント認識が得られた。
関連論文リスト
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
既存の表情認識法は、通常、個別のラベルを使って訓練済みのビジュアルエンコーダを微調整する。
視覚言語モデルによって生成されるテキスト埋め込みの豊富な知識は、識別的表情表現を学ぶための有望な代替手段である。
感情-中性変換を用いた知識強化FER法を提案する。
論文 参考訳(メタデータ) (2024-09-13T07:28:57Z) - Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
我々は,顔フォージェリを意味的文脈に配置し,意味的顔属性を変更する計算手法が顔フォージェリの源であることを定義した。
階層的なグラフで整理されたラベルの集合に各画像が関連付けられている大規模な顔偽画像データセットを構築した。
本稿では,ラベル関係を捕捉し,その優先課題を優先するセマンティクス指向の顔偽造検出手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T10:24:19Z) - Multi-Domain Norm-referenced Encoding Enables Data Efficient Transfer
Learning of Facial Expression Recognition [62.997667081978825]
本稿では,表情認識における伝達学習のための生物学的メカニズムを提案する。
提案アーキテクチャでは,人間の脳が,頭部形状の異なる表情を自然に認識する方法について解説する。
本モデルでは, FERGデータセットの分類精度92.15%を極端に高いデータ効率で達成する。
論文 参考訳(メタデータ) (2023-04-05T09:06:30Z) - Disentangling Identity and Pose for Facial Expression Recognition [54.50747989860957]
より識別的な特徴表現を学習するために,識別モデルを提案し,不整形表情認識(IPD-FER)モデルを提案する。
アイデンティティエンコーダでは、訓練中に訓練済みの顔認識モデルを利用して固定し、特定の表情訓練データに対する制限を軽減する。
合成された中性画像と同一個体の表情画像との差を比較することにより、表現成分はアイデンティティやポーズからさらに切り離される。
論文 参考訳(メタデータ) (2022-08-17T06:48:13Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - Human Face Recognition from Part of a Facial Image based on Image
Stitching [0.0]
現在の顔認識技術のほとんどは、認識される人物の完全な顔の存在を必要とする。
そこで本研究では,欠損部を画像に示す部分のフリップで縫合する工程を採用した。
ここで適用された顔認識アルゴリズムは固有顔と幾何学的手法である。
論文 参考訳(メタデータ) (2022-03-10T19:31:57Z) - Real-Time Facial Expression Recognition using Facial Landmarks and
Neural Networks [0.0]
本稿では,特徴抽出,7つの感情の分類,表情認識をリアルタイムに行うアルゴリズムを提案する。
前処理アルゴリズムに基づいてマルチ層パーセプトロンニューラルネットワークをトレーニングする。
3層はこれらの特徴ベクトルを使って訓練され、テストセットでは96%の精度が得られた。
論文 参考訳(メタデータ) (2022-01-31T21:38:30Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
我々は、機械学習を用いて、赤外線画像から視覚スペクトル面を合成する異種・横断的な顔認識の課題に対処することを目的とする。
我々は、顔画像合成にGAN(Geneversarative Adrial Networks)を使用する能力について検討し、これらの画像の性能を事前学習した畳み込みニューラルネットワーク(CNN)を用いて検討する。
CNNを用いて抽出した特徴を顔認証と検証に応用する。
論文 参考訳(メタデータ) (2020-07-22T10:18:34Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
本稿では,1枚のRGB画像から人間の感情認識を行う新しい手法を提案する。
顔のダイナミックス、アイデンティティ、表情、外観、3Dポーズのバリエーションに富んだ大規模な顔ビデオデータセットを構築した。
提案するフレームワークは毎秒50フレームで動作し、3次元表現変動のパラメータを頑健に推定することができる。
論文 参考訳(メタデータ) (2020-05-12T01:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。