Human Expression Recognition using Facial Shape Based Fourier
Descriptors Fusion
- URL: http://arxiv.org/abs/2012.14097v1
- Date: Mon, 28 Dec 2020 05:01:44 GMT
- Title: Human Expression Recognition using Facial Shape Based Fourier
Descriptors Fusion
- Authors: Ali Raza Shahid, Sheheryar Khan, Hong Yan
- Abstract summary: This paper aims to produce a new facial expression recognition method based on the changes in the facial muscles.
The geometric features are used to specify the facial regions i.e., mouth, eyes, and nose.
A multi-class support vector machine is applied for classification of seven human expression.
- Score: 15.063379178217717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dynamic facial expression recognition has many useful applications in social
networks, multimedia content analysis, security systems and others. This
challenging process must be done under recurrent problems of image illumination
and low resolution which changes at partial occlusions. This paper aims to
produce a new facial expression recognition method based on the changes in the
facial muscles. The geometric features are used to specify the facial regions
i.e., mouth, eyes, and nose. The generic Fourier shape descriptor in
conjunction with elliptic Fourier shape descriptor is used as an attribute to
represent different emotions under frequency spectrum features. Afterwards a
multi-class support vector machine is applied for classification of seven human
expression. The statistical analysis showed our approach obtained overall
competent recognition using 5-fold cross validation with high accuracy on
well-known facial expression dataset.
Related papers
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
Existing facial expression recognition methods typically fine-tune a pre-trained visual encoder using discrete labels.
We observe that the rich knowledge in text embeddings, generated by vision-language models, is a promising alternative for learning discriminative facial expression representations.
We propose a novel knowledge-enhanced FER method with an emotional-to-neutral transformation.
arXiv Detail & Related papers (2024-09-13T07:28:57Z) - Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
We put face forgery in a semantic context and define that computational methods that alter semantic face attributes are sources of face forgery.
We construct a large face forgery image dataset, where each image is associated with a set of labels organized in a hierarchical graph.
We propose a semantics-oriented face forgery detection method that captures label relations and prioritizes the primary task.
arXiv Detail & Related papers (2024-05-14T10:24:19Z) - Multi-Domain Norm-referenced Encoding Enables Data Efficient Transfer
Learning of Facial Expression Recognition [62.997667081978825]
We propose a biologically-inspired mechanism for transfer learning in facial expression recognition.
Our proposed architecture provides an explanation for how the human brain might innately recognize facial expressions on varying head shapes.
Our model achieves a classification accuracy of 92.15% on the FERG dataset with extreme data efficiency.
arXiv Detail & Related papers (2023-04-05T09:06:30Z) - Disentangling Identity and Pose for Facial Expression Recognition [54.50747989860957]
We propose an identity and pose disentangled facial expression recognition (IPD-FER) model to learn more discriminative feature representation.
For identity encoder, a well pre-trained face recognition model is utilized and fixed during training, which alleviates the restriction on specific expression training data.
By comparing the difference between synthesized neutral and expressional images of the same individual, the expression component is further disentangled from identity and pose.
arXiv Detail & Related papers (2022-08-17T06:48:13Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
We propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges.
PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face.
PF-ViT utilizes vanilla Vision Transformers, and its components are pre-trained as Masked Autoencoders on a large facial expression dataset.
arXiv Detail & Related papers (2022-07-22T13:39:06Z) - Human Face Recognition from Part of a Facial Image based on Image
Stitching [0.0]
Most of the current techniques for face recognition require the presence of a full face of the person to be recognized.
In this work, we adopted the process of stitching the face by completing the missing part with the flipping of the part shown in the picture.
The selected face recognition algorithms that are applied here are Eigenfaces and geometrical methods.
arXiv Detail & Related papers (2022-03-10T19:31:57Z) - Real-Time Facial Expression Recognition using Facial Landmarks and
Neural Networks [0.0]
This paper presents an algorithm for feature extraction, classification of seven different emotions, and facial expression recognition in a real-time manner.
A Multi-Layer Perceptron neural network is trained based on the foregoing algorithm.
A 3-layer is trained using these feature vectors, leading to 96% accuracy on the test set.
arXiv Detail & Related papers (2022-01-31T21:38:30Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
We aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images.
We explore the ability to use Geneversarative Adrial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs)
The features extracted using CNNs are applied in face identification and verification.
arXiv Detail & Related papers (2020-07-22T10:18:34Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
This paper proposes a novel method for human emotion recognition from a single RGB image.
We construct a large-scale dataset of facial videos, rich in facial dynamics, identities, expressions, appearance and 3D pose variations.
Our proposed framework runs at 50 frames per second and is capable of robustly estimating parameters of 3D expression variation.
arXiv Detail & Related papers (2020-05-12T01:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.