Multi-Metric Evaluation of Thermal-to-Visual Face Recognition
- URL: http://arxiv.org/abs/2007.11987v1
- Date: Wed, 22 Jul 2020 10:18:34 GMT
- Title: Multi-Metric Evaluation of Thermal-to-Visual Face Recognition
- Authors: Kenneth Lai and Svetlana N. Yanushkevich
- Abstract summary: We aim to address the problem of heterogeneous or cross-spectral face recognition using machine learning to synthesize visual spectrum face from infrared images.
We explore the ability to use Geneversarative Adrial Networks (GANs) for face image synthesis, and examine the performance of these images using pre-trained Convolutional Neural Networks (CNNs)
The features extracted using CNNs are applied in face identification and verification.
- Score: 3.0255457622022486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to address the problem of heterogeneous or
cross-spectral face recognition using machine learning to synthesize visual
spectrum face from infrared images. The synthesis of visual-band face images
allows for more optimal extraction of facial features to be used for face
identification and/or verification. We explore the ability to use Generative
Adversarial Networks (GANs) for face image synthesis, and examine the
performance of these images using pre-trained Convolutional Neural Networks
(CNNs). The features extracted using CNNs are applied in face identification
and verification. We explore the performance in terms of acceptance rate when
using various similarity measures for face verification.
Related papers
- rFaceNet: An End-to-End Network for Enhanced Physiological Signal Extraction through Identity-Specific Facial Contours [11.050311824021733]
Remote photoplethysmography (r) technique extracts blood volume pulse (BVP) signals from subtle pixel changes in video frames.
This study introduces rFaceNet, an advanced rFaceNet method that enhances the extraction of facial BVP signals with a focus on facial contours.
arXiv Detail & Related papers (2024-03-14T02:11:16Z) - Detecting High-Quality GAN-Generated Face Images using Neural Networks [23.388645531702597]
We propose a new strategy to differentiate GAN-generated images from authentic images by leveraging spectral band discrepancies.
In particular, we enable the digital preservation of face images using the Cross-band co-occurrence matrix and spatial co-occurrence matrix.
We show that the performance boost is particularly significant and achieves more than 92% in different post-processing environments.
arXiv Detail & Related papers (2022-03-03T13:53:27Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Simultaneous Face Hallucination and Translation for Thermal to Visible
Face Verification using Axial-GAN [74.22129648654783]
We introduce the task of thermal-to-visible face verification from low-resolution thermal images.
We propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching.
arXiv Detail & Related papers (2021-04-13T22:34:28Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - Human Expression Recognition using Facial Shape Based Fourier
Descriptors Fusion [15.063379178217717]
This paper aims to produce a new facial expression recognition method based on the changes in the facial muscles.
The geometric features are used to specify the facial regions i.e., mouth, eyes, and nose.
A multi-class support vector machine is applied for classification of seven human expression.
arXiv Detail & Related papers (2020-12-28T05:01:44Z) - Real Time Face Recognition Using Convoluted Neural Networks [0.0]
Convolutional Neural Networks are proved to be best for facial recognition.
The creation of dataset is done by converting face videos of the persons to be recognized into hundreds of images of person.
arXiv Detail & Related papers (2020-10-09T12:04:49Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
Current state-of-the-art models for automatic Facial Expression Recognition (FER) are based on very deep neural networks that are effective but rather expensive to train.
We formalize the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks.
We demonstrate how our model achieves a comparable, if not better, performance to the current state-of-the-art in FER.
arXiv Detail & Related papers (2020-09-15T09:25:37Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
We propose a framework called InterFaceGAN to interpret the disentangled face representation learned by state-of-the-art GAN models.
We first find that GANs learn various semantics in some linear subspaces of the latent space.
We then conduct a detailed study on the correlation between different semantics and manage to better disentangle them via subspace projection.
arXiv Detail & Related papers (2020-05-18T18:01:22Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.