Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN
- URL: http://arxiv.org/abs/2012.14142v1
- Date: Mon, 28 Dec 2020 08:24:04 GMT
- Title: Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN
- Authors: Heng Liu, Jianyong Liu, Tao Tao, Shudong Hou and Jungong Han
- Abstract summary: We propose a new perception consistency ultrasound image super-resolution (SR) method based on self-supervision and cycle generative adversarial network (CycleGAN)
We first generate the HR fathers and the LR sons of the test ultrasound LR image through image enhancement.
We then make full use of the cycle loss of LR-SR-LR and HR-LR-SR and the adversarial characteristics of the discriminator to promote the generator to produce better perceptually consistent SR results.
- Score: 63.49373689654419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limitations of sensors, the transmission medium and the intrinsic
properties of ultrasound, the quality of ultrasound imaging is always not
ideal, especially its low spatial resolution. To remedy this situation, deep
learning networks have been recently developed for ultrasound image
super-resolution (SR) because of the powerful approximation capability.
However, most current supervised SR methods are not suitable for ultrasound
medical images because the medical image samples are always rare, and usually,
there are no low-resolution (LR) and high-resolution (HR) training pairs in
reality. In this work, based on self-supervision and cycle generative
adversarial network (CycleGAN), we propose a new perception consistency
ultrasound image super-resolution (SR) method, which only requires the LR
ultrasound data and can ensure the re-degenerated image of the generated SR one
to be consistent with the original LR image, and vice versa. We first generate
the HR fathers and the LR sons of the test ultrasound LR image through image
enhancement, and then make full use of the cycle loss of LR-SR-LR and HR-LR-SR
and the adversarial characteristics of the discriminator to promote the
generator to produce better perceptually consistent SR results. The evaluation
of PSNR/IFC/SSIM, inference efficiency and visual effects under the benchmark
CCA-US and CCA-US datasets illustrate our proposed approach is effective and
superior to other state-of-the-art methods.
Related papers
- ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Unsupervised Representation Learning for 3D MRI Super Resolution with Degradation Adaptation [28.296921790037725]
High-resolution (HR) magnetic resonance imaging is critical in aiding doctors in their diagnoses and image-guided treatments.
Deep learning-based super-resolution reconstruction (SRR) has emerged as a promising solution for generating super-resolution (SR) images from low-resolution (LR) images.
Training such neural networks requires aligned authentic HR and LR image pairs, which are challenging to obtain due to patient movements during and between image acquisitions.
arXiv Detail & Related papers (2022-05-13T21:07:26Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Super Resolution of Arterial Spin Labeling MR Imaging Using Unsupervised
Multi-Scale Generative Adversarial Network [9.506036365253184]
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is a powerful imaging technology that can measure cerebral blood flow (CBF) quantitatively.
In this paper, we proposed a super-resolution method based on a multi-scale generative adversarial network (GAN) through unsupervised training.
arXiv Detail & Related papers (2020-09-14T01:05:54Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.