Real Image Super-Resolution using GAN through modeling of LR and HR
process
- URL: http://arxiv.org/abs/2210.10413v1
- Date: Wed, 19 Oct 2022 09:23:37 GMT
- Title: Real Image Super-Resolution using GAN through modeling of LR and HR
process
- Authors: Rao Muhammad Umer, Christian Micheloni
- Abstract summary: We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
- Score: 20.537597542144916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The current existing deep image super-resolution methods usually assume that
a Low Resolution (LR) image is bicubicly downscaled of a High Resolution (HR)
image. However, such an ideal bicubic downsampling process is different from
the real LR degradations, which usually come from complicated combinations of
different degradation processes, such as camera blur, sensor noise, sharpening
artifacts, JPEG compression, and further image editing, and several times image
transmission over the internet and unpredictable noises. It leads to the highly
ill-posed nature of the inverse upscaling problem. To address these issues, we
propose a GAN-based SR approach with learnable adaptive sinusoidal
nonlinearities incorporated in LR and SR models by directly learn degradation
distributions and then synthesize paired LR/HR training data to train the
generalized SR model to real image degradations. We demonstrate the
effectiveness of our proposed approach in quantitative and qualitative
experiments.
Related papers
- Enhancing Image Rescaling using Dual Latent Variables in Invertible
Neural Network [42.18106162158025]
A new downscaling latent variable is introduced to model variations in the image downscaling process.
It can improve image upscaling accuracy consistently without sacrificing image quality in downscaled LR images.
It is also shown to be effective in enhancing other INN-based models for image restoration applications like image hiding.
arXiv Detail & Related papers (2022-07-24T23:12:51Z) - Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models [3.9037347042028254]
Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs.
We propose a novel supervised method to simulate an unknown degradation process with the inclusion of prior hardware knowledge.
Experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation.
arXiv Detail & Related papers (2021-10-20T19:53:48Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
This study proposes a novel method to simulate an unknown downsampling process without imposing restrictive prior knowledge.
We propose a generalizable low-frequency loss (LFL) in the adversarial training framework to imitate the distribution of target LR images without using any paired examples.
arXiv Detail & Related papers (2021-09-08T06:00:32Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Real-World Super-Resolution of Face-Images from Surveillance Cameras [25.258587196435464]
We propose a novel framework for generation of realistic LR/HR training pairs.
Our framework estimates realistic blur kernels, noise distributions, and JPEG compression artifacts to generate LR images with similar image characteristics as the ones in the source domain.
For better perceptual quality we use a Generative Adrial Network (GAN) based SR model where we have exchanged the commonly used VGG-loss [24] with LPIPS-loss [52]
arXiv Detail & Related papers (2021-02-05T11:38:30Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Super-Resolution of Real-World Faces [3.4376560669160394]
Real low-resolution (LR) face images contain degradations which are too varied and complex to be captured by known downsampling kernels.
In this paper, we propose a two module super-resolution network where the feature extractor module extracts robust features from the LR image.
We train a degradation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart.
arXiv Detail & Related papers (2020-11-04T17:25:54Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.