Playing to distraction: towards a robust training of CNN classifiers
through visual explanation techniques
- URL: http://arxiv.org/abs/2012.14173v1
- Date: Mon, 28 Dec 2020 10:24:32 GMT
- Title: Playing to distraction: towards a robust training of CNN classifiers
through visual explanation techniques
- Authors: David Morales, Estefania Talavera, Beatriz Remeseiro
- Abstract summary: We present a novel and robust training scheme that integrates visual explanation techniques in the learning process.
In particular, we work on the challenging EgoFoodPlaces dataset, achieving state-of-the-art results with a lower level of complexity.
- Score: 1.2321022105220707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of deep learning is evolving in different directions, with still
the need for more efficient training strategies. In this work, we present a
novel and robust training scheme that integrates visual explanation techniques
in the learning process. Unlike the attention mechanisms that focus on the
relevant parts of images, we aim to improve the robustness of the model by
making it pay attention to other regions as well. Broadly speaking, the idea is
to distract the classifier in the learning process to force it to focus not
only on relevant regions but also on those that, a priori, are not so
informative for the discrimination of the class. We tested the proposed
approach by embedding it into the learning process of a convolutional neural
network for the analysis and classification of two well-known datasets, namely
Stanford cars and FGVC-Aircraft. Furthermore, we evaluated our model on a
real-case scenario for the classification of egocentric images, allowing us to
obtain relevant information about peoples' lifestyles. In particular, we work
on the challenging EgoFoodPlaces dataset, achieving state-of-the-art results
with a lower level of complexity. The obtained results indicate the suitability
of our proposed training scheme for image classification, improving the
robustness of the final model.
Related papers
- Exploiting Contextual Uncertainty of Visual Data for Efficient Training of Deep Models [0.65268245109828]
We introduce the notion of contextual diversity for active learning CDAL.
We propose a data repair algorithm to curate contextually fair data to reduce model bias.
We are working on developing image retrieval system for wildlife camera trap images and reliable warning system for poor quality rural roads.
arXiv Detail & Related papers (2024-11-04T09:43:33Z) - Deep ContourFlow: Advancing Active Contours with Deep Learning [3.9948520633731026]
We present a framework for both unsupervised and one-shot approaches for image segmentation.
It is capable of capturing complex object boundaries without the need for extensive labeled training data.
This is particularly required in histology, a field facing a significant shortage of annotations.
arXiv Detail & Related papers (2024-07-15T13:12:34Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Mitigating Bias: Enhancing Image Classification by Improving Model
Explanations [9.791305104409057]
Deep learning models tend to rely heavily on simple and easily discernible features in the background of images.
We introduce a mechanism that encourages the model to allocate sufficient attention to the foreground.
Our findings highlight the importance of foreground attention in enhancing model understanding and representation of the main concepts within images.
arXiv Detail & Related papers (2023-07-04T04:46:44Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
We investigate the benefit of adding semantic-class positives to instance-based Info Noise Contrastive Estimation training.
We propose a novel self-supervised co-training scheme to improve the popular infoNCE loss.
We evaluate the quality of the learnt representation on two different downstream tasks: action recognition and video retrieval.
arXiv Detail & Related papers (2020-10-19T17:59:01Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Distilling Visual Priors from Self-Supervised Learning [24.79633121345066]
Convolutional Neural Networks (CNNs) are prone to overfit small training datasets.
We present a novel two-phase pipeline that leverages self-supervised learning and knowledge distillation to improve the generalization ability of CNN models for image classification under the data-deficient setting.
arXiv Detail & Related papers (2020-08-01T13:07:18Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.