I-Health: Leveraging Edge Computing and Blockchain for Epidemic
Management
- URL: http://arxiv.org/abs/2012.14294v1
- Date: Fri, 18 Dec 2020 23:41:00 GMT
- Title: I-Health: Leveraging Edge Computing and Blockchain for Epidemic
Management
- Authors: Alaa Awad Abdellatif, Lutfi Samara, Amr Mohamed, Aiman Erbad, Carla
Fabiana Chiasserini, Mohsen Guizani, Mark Dennis O'Connor, and James Laughton
- Abstract summary: Epidemic situations demand intensive data collection and management from different locations/entities within a strict time constraint.
This paper proposes an Intelligent-Health (I-Health) system that aims to aggregate diverse e-health entities in a unique national healthcare system.
In particular, we design an automated patients monitoring scheme, at the edge, which enables the prompt discovery, remote monitoring, and fast emergency response.
- Score: 36.55809341110476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epidemic situations typically demand intensive data collection and management
from different locations/entities within a strict time constraint. Such demand
can be fulfilled by leveraging the intensive and easy deployment of the
Internet of Things (IoT) devices. The management and containment of such
situations also rely on cross-organizational and national collaboration. Thus,
this paper proposes an Intelligent-Health (I-Health) system that aims to
aggregate diverse e-health entities in a unique national healthcare system by
enabling swift, secure exchange and storage of medical data. In particular, we
design an automated patients monitoring scheme, at the edge, which enables the
prompt discovery, remote monitoring, and fast emergency response for critical
medical events, such as emerging epidemics. Furthermore, we develop a
blockchain optimization model that aims to optimize medical data sharing
between different health entities to provide effective and secure health
services. Finally, we show the effectiveness of our system, in adapting to
different critical events, while highlighting the benefits of the proposed
I-Health system.
Related papers
- An Intelligent Quantum Cyber-Security Framework for Healthcare Data Management [4.828148213747833]
This paper introduces a comprehensive quantum-based framework to overwhelm the potential security and privacy issues for secure healthcare data management.
The proposed framework delivers overall healthcare data management by coupling the advanced and more competent quantum approach with machine learning.
The experimental evaluation and comparison of the proposed IQ-HDM framework with state-of-the-art methods outline a considerable improvement up to 67.6%, in tackling cyber threats related to healthcare data security.
arXiv Detail & Related papers (2024-10-04T08:04:48Z) - The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems [2.8351008282227266]
Mobile health has the potential to revolutionize health care delivery and patient engagement.
We present an Artificial Intelligence and Reinforcement Learning platform that allows the delivery of adaptive interventions.
The flexibility of this platform to connect to various mobile health applications and digital devices and send personalized recommendations can significantly improve the impact of digital tools on health system outcomes.
arXiv Detail & Related papers (2024-09-24T13:52:15Z) - HNMblock: Blockchain technology powered Healthcare Network Model for epidemiological monitoring, medical systems security, and wellness [6.2997667081978825]
This paper introduces HNMblock, a model that elevates the realms of epidemiological monitoring, medical system security, and wellness enhancement.
By harnessing the transparency and immutability inherent in blockchain, HNMblock empowers real-time, tamper-proof tracking of epidemiological data.
It fortifies the security of medical systems through advanced cryptographic techniques and smart contracts, with a paramount focus on safeguarding patient privacy.
arXiv Detail & Related papers (2024-02-10T21:57:22Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - SSHealth: Toward Secure, Blockchain-Enabled Healthcare Systems [13.035267999201935]
This paper presents a novel smart and secure Healthcare system (ssHealth), which permits epidemics discovering, remote monitoring, and fast emergency response.
We develop a blockchain-based architecture and enable a flexible configuration thereof, which optimize medical data sharing between different health entities.
We highlight the benefits of the proposed ssHealth system and possible directions for future research.
arXiv Detail & Related papers (2020-06-18T20:34:56Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
The COVID-19 crisis represents the most dangerous threat to public health since the H1N1 pandemic of 1918.
Technology-assisted location and contact tracing, if broadly adopted, may help limit the spread of infectious diseases.
We present a tool, called 'diAry' or 'digital Ariadne', based on voluntary location and Bluetooth tracking on personal devices.
arXiv Detail & Related papers (2020-04-16T15:53:42Z) - Edge Computing For Smart Health: Context-aware Approaches,
Opportunities, and Challenges [13.506100532943162]
Among the most promising approaches for enabling smart healthcare (s-health) are edge-computing capabilities and next-generation wireless networking technologies.
We envision a MEC-based architecture and discuss the benefits that it can bring to realize in-network and context-aware processing.
We present two main functionalities that can be implemented leveraging such an architecture to provide efficient data delivery.
arXiv Detail & Related papers (2020-04-15T19:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.