DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced
Bengali Language
- URL: http://arxiv.org/abs/2012.14353v2
- Date: Sun, 21 Feb 2021 13:47:23 GMT
- Title: DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced
Bengali Language
- Authors: Md. Rezaul Karim and Sumon Kanti Dey and Bharathi Raja Chakravarthi
- Abstract summary: We propose an explainable approach for hate speech detection from the under-resourced Bengali language.
In our approach, Bengali texts are first comprehensively preprocessed, before classifying them into political, personal, geopolitical, and religious hates.
Evaluations against machine learning (linear and tree-based models) and deep neural networks (i.e., CNN, Bi-LSTM, and Conv-LSTM with word embeddings) baselines yield F1 scores of 84%, 90%, 88%, and 88%, for political, personal, geopolitical, and religious hates, respectively.
- Score: 1.2246649738388389
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The exponential growths of social media and micro-blogging sites not only
provide platforms for empowering freedom of expression and individual voices,
but also enables people to express anti-social behavior like online harassment,
cyberbullying, and hate speech. Numerous works have been proposed to utilize
the textual data for social and anti-social behavior analysis, by predicting
the contexts mostly for highly-resourced languages like English. However, some
languages are under-resourced, e.g., South Asian languages like Bengali, that
lack computational resources for accurate natural language processing (NLP). In
this paper, we propose an explainable approach for hate speech detection from
the under-resourced Bengali language, which we called DeepHateExplainer. In our
approach, Bengali texts are first comprehensively preprocessed, before
classifying them into political, personal, geopolitical, and religious hates,
by employing the neural ensemble method of different transformer-based neural
architectures (i.e., monolingual Bangla BERT-base, multilingual
BERT-cased/uncased, and XLM-RoBERTa). Subsequently, important (most and least)
terms are identified with sensitivity analysis and layer-wise relevance
propagation (LRP), before providing human-interpretable explanations. Finally,
to measure the quality of the explanation (i.e., faithfulness), we compute the
comprehensiveness and sufficiency. Evaluations against machine learning (linear
and tree-based models) and deep neural networks (i.e., CNN, Bi-LSTM, and
Conv-LSTM with word embeddings) baselines yield F1 scores of 84%, 90%, 88%, and
88%, for political, personal, geopolitical, and religious hates, respectively,
outperforming both ML and DNN baselines.
Related papers
- Analysis and Detection of Multilingual Hate Speech Using Transformer
Based Deep Learning [7.332311991395427]
As the prevalence of hate speech increases online, the demand for automated detection as an NLP task is increasing.
In this work, the proposed method is using transformer-based model to detect hate speech in social media, like twitter, Facebook, WhatsApp, Instagram, etc.
The Gold standard datasets were collected from renowned researcher Zeerak Talat, Sara Tonelli, Melanie Siegel, and Rezaul Karim.
The success rate of the proposed model for hate speech detection is higher than the existing baseline and state-of-the-art models with accuracy in Bengali dataset is 89%, in English: 91%, in German
arXiv Detail & Related papers (2024-01-19T20:40:23Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - Content-Localization based System for Analyzing Sentiment and Hate
Behaviors in Low-Resource Dialectal Arabic: English to Levantine and Gulf [5.2957928879391]
This paper proposes to localize content of resources in high-resourced languages into under-resourced Arabic dialects.
We utilize content-localization based neural machine translation to develop sentiment and hate classifiers for two low-resourced Arabic dialects: Levantine and Gulf.
Our findings shed light on the importance of considering the unique nature of dialects within the same language and ignoring the dialectal aspect would lead to misleading analysis.
arXiv Detail & Related papers (2023-11-27T15:37:33Z) - Harnessing Pre-Trained Sentence Transformers for Offensive Language
Detection in Indian Languages [0.6526824510982802]
This work delves into the domain of hate speech detection, placing specific emphasis on three low-resource Indian languages: Bengali, Assamese, and Gujarati.
The challenge is framed as a text classification task, aimed at discerning whether a tweet contains offensive or non-offensive content.
We fine-tuned pre-trained BERT and SBERT models to evaluate their effectiveness in identifying hate speech.
arXiv Detail & Related papers (2023-10-03T17:53:09Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
We create datasets and models aimed at narrowing the performance gap between low and high-resource languages.
We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art.
arXiv Detail & Related papers (2022-07-11T07:33:36Z) - Multimodal Hate Speech Detection from Bengali Memes and Texts [0.6709991492637819]
This paper is about hate speech detection from multimodal Bengali memes and texts.
We train several neural networks to analyze textual and visual information for hate speech detection.
Our study suggests that memes are moderately useful for hate speech detection in Bengali, but none of the multimodal models outperform unimodal models.
arXiv Detail & Related papers (2022-04-19T11:15:25Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
We present the fundamentals behind the next version of the Perspective API from Google Jigsaw.
At the heart of the approach is a single multilingual token-free Charformer model.
We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings.
arXiv Detail & Related papers (2022-02-22T20:55:31Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
We use COLDataset, a Chinese offensive language dataset with 37k annotated sentences.
We also propose textscCOLDetector to study output offensiveness of popular Chinese language models.
Our resources and analyses are intended to help detoxify the Chinese online communities and evaluate the safety performance of generative language models.
arXiv Detail & Related papers (2022-01-16T11:47:23Z) - Classification Benchmarks for Under-resourced Bengali Language based on
Multichannel Convolutional-LSTM Network [3.0168410626760034]
We build the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText.
We incorporate word embeddings into a Multichannel Convolutional-LSTM network for predicting different types of hate speech, document classification, and sentiment analysis.
arXiv Detail & Related papers (2020-04-11T22:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.