Analysis and Detection of Multilingual Hate Speech Using Transformer
Based Deep Learning
- URL: http://arxiv.org/abs/2401.11021v1
- Date: Fri, 19 Jan 2024 20:40:23 GMT
- Title: Analysis and Detection of Multilingual Hate Speech Using Transformer
Based Deep Learning
- Authors: Arijit Das, Somashree Nandy, Rupam Saha, Srijan Das, and Diganta Saha
- Abstract summary: As the prevalence of hate speech increases online, the demand for automated detection as an NLP task is increasing.
In this work, the proposed method is using transformer-based model to detect hate speech in social media, like twitter, Facebook, WhatsApp, Instagram, etc.
The Gold standard datasets were collected from renowned researcher Zeerak Talat, Sara Tonelli, Melanie Siegel, and Rezaul Karim.
The success rate of the proposed model for hate speech detection is higher than the existing baseline and state-of-the-art models with accuracy in Bengali dataset is 89%, in English: 91%, in German
- Score: 7.332311991395427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech is harmful content that directly attacks or promotes hatred
against members of groups or individuals based on actual or perceived aspects
of identity, such as racism, religion, or sexual orientation. This can affect
social life on social media platforms as hateful content shared through social
media can harm both individuals and communities. As the prevalence of hate
speech increases online, the demand for automated detection as an NLP task is
increasing. In this work, the proposed method is using transformer-based model
to detect hate speech in social media, like twitter, Facebook, WhatsApp,
Instagram, etc. The proposed model is independent of languages and has been
tested on Italian, English, German, Bengali. The Gold standard datasets were
collected from renowned researcher Zeerak Talat, Sara Tonelli, Melanie Siegel,
and Rezaul Karim. The success rate of the proposed model for hate speech
detection is higher than the existing baseline and state-of-the-art models with
accuracy in Bengali dataset is 89%, in English: 91%, in German dataset 91% and
in Italian dataset it is 77%. The proposed algorithm shows substantial
improvement to the benchmark method.
Related papers
- Exploiting Hatred by Targets for Hate Speech Detection on Vietnamese Social Media Texts [0.0]
We first introduce the ViTHSD - a targeted hate speech detection dataset for Vietnamese Social Media Texts.
The dataset contains 10K comments, each comment is labeled to specific targets with three levels: clean, offensive, and hate.
The inter-annotator agreement obtained from the dataset is 0.45 by Cohen's Kappa index, which is indicated as a moderate level.
arXiv Detail & Related papers (2024-04-30T04:16:55Z) - In Generative AI we Trust: Can Chatbots Effectively Verify Political
Information? [39.58317527488534]
This article presents a comparative analysis of the ability of two large language model (LLM)-based chatbots, ChatGPT and Bing Chat, to detect veracity of political information.
We use AI auditing methodology to investigate how chatbots evaluate true, false, and borderline statements on five topics: COVID-19, Russian aggression against Ukraine, the Holocaust, climate change, and LGBTQ+ related debates.
The results show high performance of ChatGPT for the baseline veracity evaluation task, with 72 percent of the cases evaluated correctly on average across languages without pre-training.
arXiv Detail & Related papers (2023-12-20T15:17:03Z) - Hate Speech and Offensive Content Detection in Indo-Aryan Languages: A
Battle of LSTM and Transformers [0.0]
We conduct a comparative analysis of hate speech classification across five distinct languages: Bengali, Assamese, Bodo, Sinhala, and Gujarati.
Bert Base Multilingual Cased emerges as a strong performer across languages, achieving an F1 score of 0.67027 for Bengali and 0.70525 for Assamese.
In Sinhala, XLM-R stands out with an F1 score of 0.83493, whereas for Gujarati, a custom LSTM-based model outshined with an F1 score of 0.76601.
arXiv Detail & Related papers (2023-12-09T20:24:00Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
This paper investigates the feasibility of leveraging domain-specific word embedding in Bidirectional LSTM based deep model to automatically detect/classify hate speech.
The experiments showed that domainspecific word embedding with the Bidirectional LSTM based deep model achieved a 93% f1-score while BERT achieved up to 96% f1-score on a combined balanced dataset from available hate speech datasets.
arXiv Detail & Related papers (2021-11-02T11:42:54Z) - Role of Artificial Intelligence in Detection of Hateful Speech for
Hinglish Data on Social Media [1.8899300124593648]
Prevalence of Hindi-English code-mixed data (Hinglish) is on the rise with most of the urban population all over the world.
Hate speech detection algorithms deployed by most social networking platforms are unable to filter out offensive and abusive content posted in these code-mixed languages.
We propose a methodology for efficient detection of unstructured code-mix Hinglish language.
arXiv Detail & Related papers (2021-05-11T10:02:28Z) - Hate Speech detection in the Bengali language: A dataset and its
baseline evaluation [0.8793721044482612]
This paper presents a new dataset of 30,000 user comments tagged by crowd sourcing and varified by experts.
All the comments are collected from YouTube and Facebook comment section and classified into seven categories.
A total of 50 annotators annotated each comment three times and the majority vote was taken as the final annotation.
arXiv Detail & Related papers (2020-12-17T15:53:54Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - Demoting Racial Bias in Hate Speech Detection [39.376886409461775]
In current hate speech datasets, there exists a correlation between annotators' perceptions of toxicity and signals of African American English (AAE)
In this paper, we use adversarial training to mitigate this bias, introducing a hate speech classifier that learns to detect toxic sentences while demoting confounds corresponding to AAE texts.
Experimental results on a hate speech dataset and an AAE dataset suggest that our method is able to substantially reduce the false positive rate for AAE text while only minimally affecting the performance of hate speech classification.
arXiv Detail & Related papers (2020-05-25T17:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.