論文の概要: Phishing Detection through Email Embeddings
- arxiv url: http://arxiv.org/abs/2012.14488v1
- Date: Mon, 28 Dec 2020 21:16:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 10:54:37.631048
- Title: Phishing Detection through Email Embeddings
- Title(参考訳): メール埋め込みによるフィッシング検出
- Authors: Luis Felipe Guti\'errez, Faranak Abri, Miriam Armstrong, Akbar Siami
Namin, Keith S. Jones
- Abstract要約: 機械学習技術によるフィッシングメール検出の問題点は文献で広く議論されている。
本稿では,電子メールの埋め込みによってこれらの手がかりが捉えられるか無視されるかを調べるために,同様の指標を用いたフィッシングと正当性メールのセットを構築した。
以上の結果から,eメール埋め込み手法は,メールをフィッシングあるいは正当に分類するのに有効であることが示された。
- 参考スコア(独自算出の注目度): 2.099922236065961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of detecting phishing emails through machine learning techniques
has been discussed extensively in the literature. Conventional and
state-of-the-art machine learning algorithms have demonstrated the possibility
of building classifiers with high accuracy. The existing research studies treat
phishing and genuine emails through general indicators and thus it is not
exactly clear what phishing features are contributing to variations of the
classifiers. In this paper, we crafted a set of phishing and legitimate emails
with similar indicators in order to investigate whether these cues are captured
or disregarded by email embeddings, i.e., vectorizations. We then fed machine
learning classifiers with the carefully crafted emails to find out about the
performance of email embeddings developed. Our results show that using these
indicators, email embeddings techniques is effective for classifying emails as
phishing or legitimate.
- Abstract(参考訳): 機械学習技術によるフィッシングメール検出の問題点は文献で広く議論されている。
従来および最先端の機械学習アルゴリズムは、高い精度で分類器を構築する可能性を実証している。
既存の研究は、フィッシングと本物のeメールを一般的な指標で扱うため、フィッシング機能が分類器のバリエーションにどのように寄与しているかは正確には分かっていない。
本稿では,電子メールの埋め込み,すなわちベクトル化によってこれらの手がかりが捕捉されるか無視されるかを調べるために,同様の指標を用いたフィッシングと正当性メールのセットを構築した。
次に、慎重に構築されたメールで機械学習の分類器を入力し、開発したEメールの埋め込みのパフォーマンスを調べました。
これらの指標を用いて電子メールをフィッシングや正当と分類する手法が有効であることを示す。
関連論文リスト
- Eyes on the Phish(er): Towards Understanding Users' Email Processing Pattern and Mental Models in Phishing Detection [0.4543820534430522]
本研究では, 作業負荷がフィッシングに対する感受性に与える影響について検討した。
我々は、視線追跡技術を用いて、参加者の読書パターンやフィッシングメールとのインタラクションを観察する。
以上の結果から,メール送信者への注意がフィッシングの感受性を低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-12T02:57:49Z) - C2P-CLIP: Injecting Category Common Prompt in CLIP to Enhance Generalization in Deepfake Detection [98.34703790782254]
本稿では、カテゴリ共通プロンプトCLIPを紹介し、カテゴリ共通プロンプトをテキストエンコーダに統合し、カテゴリ関連概念をイメージエンコーダに注入する。
提案手法は,テスト中に追加パラメータを導入することなく,元のCLIPと比較して検出精度が12.41%向上した。
論文 参考訳(メタデータ) (2024-08-19T02:14:25Z) - Phishing Codebook: A Structured Framework for the Characterization of Phishing Emails [17.173114048398954]
フィッシングは、世界中の組織や個人が直面している最も一般的で高価なサイバー犯罪の1つである。
これまでのほとんどの研究は、フィッシングメールを特徴付けるための様々な技術的特徴とテキストの伝統的な表現に焦点を当ててきた。
本稿では、フィッシングメールの構造を解析し、人間の意思決定に影響を与える要因をよりよく理解する。
論文 参考訳(メタデータ) (2024-08-16T18:30:53Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
本研究では,大規模な言語モデル(LLM)を用いてフィッシングメールを検出するシステムChatSpamDetectorを紹介する。
LLM解析に適したプロンプトに電子メールデータを変換することにより、電子メールがフィッシングされているか否かを高精度に判定する。
総合的なフィッシングメールデータセットを用いて評価を行い,複数のLLMおよびベースラインシステムと比較した。
論文 参考訳(メタデータ) (2024-02-28T06:28:15Z) - Prompted Contextual Vectors for Spear-Phishing Detection [45.07804966535239]
スパイアフィッシング攻撃は重大なセキュリティ上の課題を示す。
本稿では,新しい文書ベクトル化手法に基づく検出手法を提案する。
提案手法は, LLM生成したスピアフィッシングメールの識別において, 91%のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-02-13T09:12:55Z) - Profiler: Profile-Based Model to Detect Phishing Emails [15.109679047753355]
本稿では,攻撃者がメールに適応して検出を回避できる可能性を低減するために,メールの多次元リスク評価を提案する。
本研究では,(1)脅威レベル,(2)認知的操作,(3)電子メールタイプを分析する3つのモデルを含むリスクアセスメントフレームワークを開発する。
プロファイラは、MLアプローチと併用して、誤分類を減らしたり、トレーニング段階で大規模な電子メールデータセットのラベル付けとして使用することができる。
論文 参考訳(メタデータ) (2022-08-18T10:01:55Z) - Email Summarization to Assist Users in Phishing Identification [1.433758865948252]
サイバーフィッシング攻撃は、特定の情報や手がかりが存在する場合にのみ、トレーニングデータによってより正確で、標的になり、調整される。
この研究は、トランスフォーマーベースの機械学習を活用して、将来的な心理的トリガーを分析する。
次に、この情報をアマルゲイトし、ユーザーに提示し、電子メールが「フィシー」なのか(ii)自己学習した先進的な悪意あるパターンなのかを簡単に判断できるようにします。
論文 参考訳(メタデータ) (2022-03-24T23:03:46Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z) - Learning with Weak Supervision for Email Intent Detection [56.71599262462638]
本稿では,メールの意図を検出するために,ユーザアクションを弱い監視源として活用することを提案する。
メール意図識別のためのエンドツーエンドの堅牢なディープニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-05-26T23:41:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。