論文の概要: A Paragraph-level Multi-task Learning Model for Scientific
Fact-Verification
- arxiv url: http://arxiv.org/abs/2012.14500v2
- Date: Mon, 25 Jan 2021 02:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 12:39:48.297001
- Title: A Paragraph-level Multi-task Learning Model for Scientific
Fact-Verification
- Title(参考訳): 科学的事実検証のための段落レベルのマルチタスク学習モデル
- Authors: Xiangci Li, Gully Burns, Nanyun Peng
- Abstract要約: 科学的主張を裏付けるあるいは合理的な証拠を提供することによって検証することは、非自明な作業である。
本研究では,bertモデルからコンテキスト化文の埋め込み列を直接計算し,合理的選択と姿勢予測のモデルを共同で学習することにより,scifactタスクのための段落レベルのマルチタスク学習モデルを提案する。
- 参考スコア(独自算出の注目度): 15.121389624346927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even for domain experts, it is a non-trivial task to verify a scientific
claim by providing supporting or refuting evidence rationales. The situation
worsens as misinformation is proliferated on social media or news websites,
manually or programmatically, at every moment. As a result, an automatic
fact-verification tool becomes crucial for combating the spread of
misinformation. In this work, we propose a novel, paragraph-level, multi-task
learning model for the SciFact task by directly computing a sequence of
contextualized sentence embeddings from a BERT model and jointly training the
model on rationale selection and stance prediction.
- Abstract(参考訳): ドメインの専門家でさえも、証拠の根拠を支持または否定することで科学的な主張を検証することは非自明な仕事である。
ソーシャルメディアやニュースサイトでは、いつでも手動でもプログラムでも、誤報が広まると状況は悪化する。
その結果、誤情報拡散に対処するためには、自動事実検証ツールが不可欠となる。
本研究では,SciFactタスクに対して,BERTモデルからの文脈化文埋め込みのシーケンスを直接計算し,有理数選択と姿勢予測のモデルを協調的に訓練する,新しい段落レベルのマルチタスク学習モデルを提案する。
関連論文リスト
- Fact or Fiction? Improving Fact Verification with Knowledge Graphs through Simplified Subgraph Retrievals [0.0]
本稿では, 証拠が構造化知識グラフの形で存在するデータセット上で, クレームを検証するための効率的な方法を提案する。
また,エビデンス検索プロセスの簡略化により,計算資源の削減とテストセット精度の向上を実現するモデルの構築が可能となる。
論文 参考訳(メタデータ) (2024-08-14T10:46:15Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
事前学習言語モデル(LM)は、科学文献理解タスクにおいて有効であることを示す。
文献理解タスク間の共通知識共有を容易にするために,マルチタスクのコントラスト学習フレームワークであるSciMultを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:47:22Z) - Context Matters: A Strategy to Pre-train Language Model for Science
Education [4.053049694533914]
BERTベースの言語モデルは、様々な言語関連タスクにおいて、従来のNLPモデルよりも大きな優位性を示している。
学生が使用する言語は、BERTのトレーニングソースであるジャーナルやウィキペディアの言語とは異なる。
本研究は,教育領域におけるドメイン固有データに対する継続事前学習の有効性を確認した。
論文 参考訳(メタデータ) (2023-01-27T23:50:16Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Abstract, Rationale, Stance: A Joint Model for Scientific Claim
Verification [18.330265729989843]
我々は,3つのタスクのモジュールを,機械読解フレームワークを用いて共同で学習するアプローチをARSJointとして提案する。
ベンチマークデータセットSciFactの実験結果は、我々のアプローチが既存の作業より優れていることを示している。
論文 参考訳(メタデータ) (2021-09-13T10:07:26Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
特定のデータセットでひとつのタスクを実行するための強力な神経予測器をトレーニングするNLPのパラダイムが、さまざまなアプリケーションで最先端のパフォーマンスを実現している。
データ分布が定常である、すなわち、トレーニングとテストの時間の両方で、データは固定された分布からサンプリングされる、という仮定に基づいて構築される。
この方法でのトレーニングは、人間が絶えず変化する情報の流れの中で学習し、操作できる方法と矛盾する。
データ分散がモデル寿命の経過とともにシフトすることが期待される実世界のユースケースに不適応である。
論文 参考訳(メタデータ) (2021-09-03T14:29:20Z) - Leveraging Commonsense Knowledge on Classifying False News and
Determining Checkworthiness of Claims [1.487444917213389]
本稿では,偽ニュース分類とチェック価値のあるクレーム検出のタスクに対して,コモンセンスの知識を活用することを提案する。
マルチタスク学習環境において、BERT言語モデルに共通する質問応答タスクと上記のタスクを微調整する。
実験により,コモンセンス知識が両タスクのパフォーマンスを向上させることを示す。
論文 参考訳(メタデータ) (2021-08-08T20:52:45Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
本稿では,分子学習タスクのための事前学習言語モデルに対して,辞書学習(R2DL)による表現再プログラミングを提案する。
対比プログラムは、k-SVDソルバを用いて、高密度ソースモデル入力空間(言語データ)とスパースターゲットモデル入力空間(例えば、化学および生物学的分子データ)との間の線形変換を学習する。
R2DLは、ドメイン固有のデータに基づいて訓練されたアート毒性予測モデルの状態によって確立されたベースラインを達成し、限られたトレーニングデータ設定でベースラインを上回る。
論文 参考訳(メタデータ) (2020-12-07T05:50:27Z) - Generating Fact Checking Explanations [52.879658637466605]
まだ欠けているパズルの重要なピースは、プロセスの最も精巧な部分を自動化する方法を理解することです。
本稿では、これらの説明を利用可能なクレームコンテキストに基づいて自動生成する方法について、最初の研究を行う。
この結果から,個別に学習するのではなく,両目標を同時に最適化することで,事実確認システムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T05:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。