A Paragraph-level Multi-task Learning Model for Scientific
Fact-Verification
- URL: http://arxiv.org/abs/2012.14500v2
- Date: Mon, 25 Jan 2021 02:29:18 GMT
- Title: A Paragraph-level Multi-task Learning Model for Scientific
Fact-Verification
- Authors: Xiangci Li, Gully Burns, Nanyun Peng
- Abstract summary: It is a non-trivial task to verify a scientific claim by providing supporting or rationale evidences.
In this work, we propose a paragraph-level, multi-task learning model for the SciFact task by directly computing a sequence of contextualized sentence embeddings from a BERT model and jointly training the model on rationale selection and stance prediction.
- Score: 15.121389624346927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even for domain experts, it is a non-trivial task to verify a scientific
claim by providing supporting or refuting evidence rationales. The situation
worsens as misinformation is proliferated on social media or news websites,
manually or programmatically, at every moment. As a result, an automatic
fact-verification tool becomes crucial for combating the spread of
misinformation. In this work, we propose a novel, paragraph-level, multi-task
learning model for the SciFact task by directly computing a sequence of
contextualized sentence embeddings from a BERT model and jointly training the
model on rationale selection and stance prediction.
Related papers
- Fact or Fiction? Improving Fact Verification with Knowledge Graphs through Simplified Subgraph Retrievals [0.0]
We present efficient methods for verifying claims on a dataset where the evidence is in the form of structured knowledge graphs.
By simplifying the evidence retrieval process, we are able to construct models that both require less computational resources and achieve better test-set accuracy.
arXiv Detail & Related papers (2024-08-14T10:46:15Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Context Matters: A Strategy to Pre-train Language Model for Science
Education [4.053049694533914]
BERT-based language models have shown significant superiority over traditional NLP models in various language-related tasks.
The language used by students is different from the language in journals and Wikipedia, which are training sources of BERT.
Our study confirms the effectiveness of continual pre-training on domain-specific data in the education domain.
arXiv Detail & Related papers (2023-01-27T23:50:16Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Abstract, Rationale, Stance: A Joint Model for Scientific Claim
Verification [18.330265729989843]
We propose an approach, named as ARSJoint, that jointly learns the modules for the three tasks with a machine reading comprehension framework.
The experimental results on the benchmark dataset SciFact show that our approach outperforms the existing works.
arXiv Detail & Related papers (2021-09-13T10:07:26Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications.
It builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time.
This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information.
It is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime
arXiv Detail & Related papers (2021-09-03T14:29:20Z) - Leveraging Commonsense Knowledge on Classifying False News and
Determining Checkworthiness of Claims [1.487444917213389]
We propose to leverage commonsense knowledge for the tasks of false news classification and check-worthy claim detection.
We fine-tune the BERT language model with a commonsense question answering task and the aforementioned tasks in a multi-task learning environment.
Our experimental analysis demonstrates that commonsense knowledge can improve performance in both tasks.
arXiv Detail & Related papers (2021-08-08T20:52:45Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
We propose Representation Reprogramming via Dictionary Learning (R2DL) for adversarially reprogramming pretrained language models for molecular learning tasks.
The adversarial program learns a linear transformation between a dense source model input space (language data) and a sparse target model input space (e.g., chemical and biological molecule data) using a k-SVD solver.
R2DL achieves the baseline established by state of the art toxicity prediction models trained on domain-specific data and outperforms the baseline in a limited training-data setting.
arXiv Detail & Related papers (2020-12-07T05:50:27Z) - Generating Fact Checking Explanations [52.879658637466605]
A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process.
This paper provides the first study of how these explanations can be generated automatically based on available claim context.
Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system.
arXiv Detail & Related papers (2020-04-13T05:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.