Cascaded Framework for Automatic Evaluation of Myocardial Infarction
from Delayed-Enhancement Cardiac MRI
- URL: http://arxiv.org/abs/2012.14556v1
- Date: Tue, 29 Dec 2020 01:35:02 GMT
- Title: Cascaded Framework for Automatic Evaluation of Myocardial Infarction
from Delayed-Enhancement Cardiac MRI
- Authors: Jun Ma
- Abstract summary: We first use a 2D U-Net to segment the whole heart, including the left ventricle and the myocardium.
A new 2D U-Net is used to segment the infraction and no-reflow areas in the whole heart ROI.
Our method took second place in the MICCAI 2020 EMIDEC segmentation task with Dice scores of 86.28%, 62.24%, and 77.76% for myocardium, infraction, and no-reflow areas, respectively, and first place in the classification task with an accuracy of 92%.
- Score: 9.247774141419134
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic evaluation of myocardium and pathology plays an important role in
the quantitative analysis of patients suffering from myocardial infarction. In
this paper, we present a cascaded convolutional neural network framework for
myocardial infarction segmentation and classification in delayed-enhancement
cardiac MRI. Specifically, we first use a 2D U-Net to segment the whole heart,
including the left ventricle and the myocardium. Then, we crop the whole heart
as a region of interest (ROI). Finally, a new 2D U-Net is used to segment the
infraction and no-reflow areas in the whole heart ROI. The segmentation method
can be applied to the classification task where the segmentation results with
the infraction or no-reflow areas are classified as pathological cases. Our
method took second place in the MICCAI 2020 EMIDEC segmentation task with Dice
scores of 86.28%, 62.24%, and 77.76% for myocardium, infraction, and no-reflow
areas, respectively, and first place in the classification task with an
accuracy of 92%.
Related papers
- Multi-Source and Multi-Sequence Myocardial Pathology Segmentation Using a Cascading Refinement CNN [0.49923266458151416]
We propose the Multi-Sequence Cascading Refinement CNN (MS-CaRe-CNN) to generate semantic segmentations to assess the viability of myocardial tissue.
MS-CaRe-CNN is well-suited to generate semantic segmentations to assess the viability of myocardial tissue, enabling downstream tasks like personalized therapy planning.
arXiv Detail & Related papers (2024-09-19T14:01:15Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Deep Learning methods for automatic evaluation of delayed
enhancement-MRI. The results of the EMIDEC challenge [21.93792387878765]
The EMIDEC challenge was to evaluate if deep learning methods can distinguish between normal and pathological cases.
The database consists of 150 exams divided into 50 cases with normal MRI after injection of a contrast agent and 100 cases with myocardial infarction.
The results show that the automatic classification of an exam is a reachable task.
arXiv Detail & Related papers (2021-08-09T13:15:25Z) - Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI [12.940103904327655]
We propose a cascaded convolutional neural network for automatic myocardial infarction segmentation from cardiac MRI.
Our method is evaluated on the MICCAI 2020 EMIDEC challenge dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for myocardium, infarction and no-reflow respectively.
arXiv Detail & Related papers (2020-12-28T07:41:10Z) - Automatic Myocardial Infarction Evaluation from Delayed-Enhancement
Cardiac MRI using Deep Convolutional Networks [8.544381926074971]
We propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI)
It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity.
The second task is to automatically classify a given case into normal or pathological from clinical information with or without DE-MRI.
arXiv Detail & Related papers (2020-10-30T11:18:25Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.