論文の概要: Myocardial Segmentation of Cardiac MRI Sequences with Temporal
Consistency for Coronary Artery Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2012.14564v1
- Date: Tue, 29 Dec 2020 01:54:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 20:31:17.181416
- Title: Myocardial Segmentation of Cardiac MRI Sequences with Temporal
Consistency for Coronary Artery Disease Diagnosis
- Title(参考訳): 冠状動脈疾患診断における経時的MRI画像の心筋分画の検討
- Authors: Yutian Chen, Xiaowei Xu, Dewen Zeng, Yiyu Shi, Haiyun Yuan, Jian
Zhuang, Yuhao Dong, Qianjun Jia, Meiping Huang
- Abstract要約: 本研究では,左室腔,右室腔,心筋の心臓MRI(CMR)スキャン画像のシークエンスのための心筋セグメンテーションフレームワークを提案する。
我々のフレームワークは、Dice係数の最大2%のセグメンテーション精度を向上させることができる。
- 参考スコア(独自算出の注目度): 12.53412028532286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary artery disease (CAD) is the most common cause of death globally, and
its diagnosis is usually based on manual myocardial segmentation of Magnetic
Resonance Imaging (MRI) sequences. As the manual segmentation is tedious,
time-consuming and with low applicability, automatic myocardial segmentation
using machine learning techniques has been widely explored recently. However,
almost all the existing methods treat the input MRI sequences independently,
which fails to capture the temporal information between sequences, e.g., the
shape and location information of the myocardium in sequences along time. In
this paper, we propose a myocardial segmentation framework for sequence of
cardiac MRI (CMR) scanning images of left ventricular cavity, right ventricular
cavity, and myocardium. Specifically, we propose to combine conventional
networks and recurrent networks to incorporate temporal information between
sequences to ensure temporal consistent. We evaluated our framework on the
Automated Cardiac Diagnosis Challenge (ACDC) dataset. Experiment results
demonstrate that our framework can improve the segmentation accuracy by up to
2% in Dice coefficient.
- Abstract(参考訳): 冠状動脈疾患(CAD)は世界中で最も多い死因であり、診断は通常、MRI(MRI)による手動心筋セグメンテーションに基づいている。
手動セグメンテーションは退屈で時間がかかり、適用性が低いため、機械学習技術を用いた自動心筋セグメンテーションが近年広く研究されている。
しかし、既存のほとんどの手法は入力されたMRIシーケンスを独立に扱うため、例えば、時間に沿って心筋の形状や位置などのシーケンス間の時間情報の取得に失敗する。
本稿では,左室腔,右室腔,心筋の心筋mri(cmr)スキャン画像の塩基配列解析のための心筋セグメンテーションフレームワークを提案する。
具体的には,従来のネットワークとリカレントネットワークを組み合わせることで,シーケンス間の時間情報を取り込んで時間的一貫性を確保することを提案する。
我々は,acdc(automated heart diagnosis challenge)データセットの枠組みを評価した。
実験結果から,本フレームワークはDice係数の最大2%のセグメンテーション精度を向上できることが示された。
関連論文リスト
- Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - Deep Learning for Automatic Strain Quantification in Arrhythmogenic
Right Ventricular Cardiomyopathy [0.0]
CMRIによる心臓運動の定量化は、不整脈性右室心筋症(ARVC)診断の不可欠な部分である。
Inlicit Neural Representations (INR) とディープラーニングを用いた心臓運動自動評価法を開発した。
以上の結果から,スライス間アライメントと超解像ボリュームの生成と,2つの心像の同時解析が相まって,登録性能が向上することが示唆された。
論文 参考訳(メタデータ) (2023-11-24T12:55:36Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology
Segmentation [20.68539814306763]
心筋梗塞のリスク階層化と治療計画にMyoPSが重要である
非整合MS-CMR画像のためのMyoPSフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T15:41:40Z) - A Comprehensive 3-D Framework for Automatic Quantification of Late
Gadolinium Enhanced Cardiac Magnetic Resonance Images [5.947543669357994]
後期ガドリニウム増強(LGE)心筋磁気共鳴(CMR)は、高強度の非生存性心筋を直接可視化することができる。
心臓発作患者に対しては,LGE CMR画像の解析と定量化により適切な治療の決定を容易にすることが重要である。
正確な定量化を実現するためには、LGE CMR画像は心筋の分画と梗塞の分類の2つのステップで処理する必要がある。
論文 参考訳(メタデータ) (2022-05-21T11:54:39Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
マルチシーケンスCMRデータから傷痕と浮腫のセグメンテーションに取り組むための,新しい自動重み付け監視フレームワークを開発した。
また, より小さな心筋病変領域の分画を, 形状の事前知識で促進する, 粗大から細大の枠組みを設計した。
マルチシーケンスCMRデータを用いた心筋病理診断の進歩に期待できる。
論文 参考訳(メタデータ) (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - Echocardiography Segmentation with Enforced Temporal Consistency [10.652677452009627]
本研究では,2次元以上の長軸心形態を学習するための枠組みを提案する。
心臓の不整合の同定と補正は、生理的に解釈可能な心臓形状の埋め込みを学ぶために訓練された拘束されたオートエンコーダに依存している。
論文 参考訳(メタデータ) (2021-12-03T16:09:32Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。